Level statistics for quantum Hall systems
Level statistics for two classes of disordered systems at criticality are analyzed in terms of different realizations of the Chalker–Coddington network model. These include: 1) Re-examination of the standard U(1) model describing dynamics of electrons on the lowest Landau level in the quantum Hal...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2005
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121758 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Level statistics for quantum Hall systems / V. Kagalovsky, B. Horovitz, Y. Avishai // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 377-381. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-121758 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1217582017-06-17T03:03:00Z Level statistics for quantum Hall systems Kagalovsky, V. Horovitz, B. Avishai, Y. Электpонные свойства металлов и сплавов Level statistics for two classes of disordered systems at criticality are analyzed in terms of different realizations of the Chalker–Coddington network model. These include: 1) Re-examination of the standard U(1) model describing dynamics of electrons on the lowest Landau level in the quantum Hall effect, where it is shown that after proper local unfolding the nearest-neighbor spacing distribution (NNSD) at the critical energy follows the Wigner surmise for Gaussian unitary ensembles (GUE). 2) Quasi-particles in disordered superconductors with broken time reversal and spin rotation invariance (in the language of random matrix theory this system is a representative of symmetry class D in the classification scheme of Altland and Zirnbauer). Here again the NNSD obeys the Wigner surmise for GUE, reflecting therefore only «basic» discrete symmetries of the system (time reversal violation) and ignoring particle–hole symmetries and other finer details (criticality). In the localized regime level repulsion is suppressed. 2005 Article Level statistics for quantum Hall systems / V. Kagalovsky, B. Horovitz, Y. Avishai // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 377-381. — Бібліогр.: 12 назв. — англ. 0132-6414 PACS: 73.20.Fz, 72.15.Rn http://dspace.nbuv.gov.ua/handle/123456789/121758 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Электpонные свойства металлов и сплавов Электpонные свойства металлов и сплавов |
spellingShingle |
Электpонные свойства металлов и сплавов Электpонные свойства металлов и сплавов Kagalovsky, V. Horovitz, B. Avishai, Y. Level statistics for quantum Hall systems Физика низких температур |
description |
Level statistics for two classes of disordered systems at criticality are analyzed in terms of different
realizations of the Chalker–Coddington network model. These include: 1) Re-examination
of the standard U(1) model describing dynamics of electrons on the lowest Landau level in the
quantum Hall effect, where it is shown that after proper local unfolding the nearest-neighbor spacing
distribution (NNSD) at the critical energy follows the Wigner surmise for Gaussian unitary ensembles
(GUE). 2) Quasi-particles in disordered superconductors with broken time reversal and
spin rotation invariance (in the language of random matrix theory this system is a representative of
symmetry class D in the classification scheme of Altland and Zirnbauer). Here again the NNSD
obeys the Wigner surmise for GUE, reflecting therefore only «basic» discrete symmetries of the
system (time reversal violation) and ignoring particle–hole symmetries and other finer details
(criticality). In the localized regime level repulsion is suppressed. |
format |
Article |
author |
Kagalovsky, V. Horovitz, B. Avishai, Y. |
author_facet |
Kagalovsky, V. Horovitz, B. Avishai, Y. |
author_sort |
Kagalovsky, V. |
title |
Level statistics for quantum Hall systems |
title_short |
Level statistics for quantum Hall systems |
title_full |
Level statistics for quantum Hall systems |
title_fullStr |
Level statistics for quantum Hall systems |
title_full_unstemmed |
Level statistics for quantum Hall systems |
title_sort |
level statistics for quantum hall systems |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2005 |
topic_facet |
Электpонные свойства металлов и сплавов |
url |
http://dspace.nbuv.gov.ua/handle/123456789/121758 |
citation_txt |
Level statistics for quantum Hall systems / V. Kagalovsky, B. Horovitz, Y. Avishai // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 377-381. — Бібліогр.: 12 назв. — англ. |
series |
Физика низких температур |
work_keys_str_mv |
AT kagalovskyv levelstatisticsforquantumhallsystems AT horovitzb levelstatisticsforquantumhallsystems AT avishaiy levelstatisticsforquantumhallsystems |
first_indexed |
2023-10-18T20:40:14Z |
last_indexed |
2023-10-18T20:40:14Z |
_version_ |
1796150806281453568 |