Level statistics for quantum Hall systems

Level statistics for two classes of disordered systems at criticality are analyzed in terms of different realizations of the Chalker–Coddington network model. These include: 1) Re-examination of the standard U(1) model describing dynamics of electrons on the lowest Landau level in the quantum Hal...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Kagalovsky, V., Horovitz, B., Avishai, Y.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2005
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121758
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Level statistics for quantum Hall systems / V. Kagalovsky, B. Horovitz, Y. Avishai // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 377-381. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121758
record_format dspace
spelling irk-123456789-1217582017-06-17T03:03:00Z Level statistics for quantum Hall systems Kagalovsky, V. Horovitz, B. Avishai, Y. Электpонные свойства металлов и сплавов Level statistics for two classes of disordered systems at criticality are analyzed in terms of different realizations of the Chalker–Coddington network model. These include: 1) Re-examination of the standard U(1) model describing dynamics of electrons on the lowest Landau level in the quantum Hall effect, where it is shown that after proper local unfolding the nearest-neighbor spacing distribution (NNSD) at the critical energy follows the Wigner surmise for Gaussian unitary ensembles (GUE). 2) Quasi-particles in disordered superconductors with broken time reversal and spin rotation invariance (in the language of random matrix theory this system is a representative of symmetry class D in the classification scheme of Altland and Zirnbauer). Here again the NNSD obeys the Wigner surmise for GUE, reflecting therefore only «basic» discrete symmetries of the system (time reversal violation) and ignoring particle–hole symmetries and other finer details (criticality). In the localized regime level repulsion is suppressed. 2005 Article Level statistics for quantum Hall systems / V. Kagalovsky, B. Horovitz, Y. Avishai // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 377-381. — Бібліогр.: 12 назв. — англ. 0132-6414 PACS: 73.20.Fz, 72.15.Rn http://dspace.nbuv.gov.ua/handle/123456789/121758 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Электpонные свойства металлов и сплавов
Электpонные свойства металлов и сплавов
spellingShingle Электpонные свойства металлов и сплавов
Электpонные свойства металлов и сплавов
Kagalovsky, V.
Horovitz, B.
Avishai, Y.
Level statistics for quantum Hall systems
Физика низких температур
description Level statistics for two classes of disordered systems at criticality are analyzed in terms of different realizations of the Chalker–Coddington network model. These include: 1) Re-examination of the standard U(1) model describing dynamics of electrons on the lowest Landau level in the quantum Hall effect, where it is shown that after proper local unfolding the nearest-neighbor spacing distribution (NNSD) at the critical energy follows the Wigner surmise for Gaussian unitary ensembles (GUE). 2) Quasi-particles in disordered superconductors with broken time reversal and spin rotation invariance (in the language of random matrix theory this system is a representative of symmetry class D in the classification scheme of Altland and Zirnbauer). Here again the NNSD obeys the Wigner surmise for GUE, reflecting therefore only «basic» discrete symmetries of the system (time reversal violation) and ignoring particle–hole symmetries and other finer details (criticality). In the localized regime level repulsion is suppressed.
format Article
author Kagalovsky, V.
Horovitz, B.
Avishai, Y.
author_facet Kagalovsky, V.
Horovitz, B.
Avishai, Y.
author_sort Kagalovsky, V.
title Level statistics for quantum Hall systems
title_short Level statistics for quantum Hall systems
title_full Level statistics for quantum Hall systems
title_fullStr Level statistics for quantum Hall systems
title_full_unstemmed Level statistics for quantum Hall systems
title_sort level statistics for quantum hall systems
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2005
topic_facet Электpонные свойства металлов и сплавов
url http://dspace.nbuv.gov.ua/handle/123456789/121758
citation_txt Level statistics for quantum Hall systems / V. Kagalovsky, B. Horovitz, Y. Avishai // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 377-381. — Бібліогр.: 12 назв. — англ.
series Физика низких температур
work_keys_str_mv AT kagalovskyv levelstatisticsforquantumhallsystems
AT horovitzb levelstatisticsforquantumhallsystems
AT avishaiy levelstatisticsforquantumhallsystems
first_indexed 2023-10-18T20:40:14Z
last_indexed 2023-10-18T20:40:14Z
_version_ 1796150806281453568