Novel laser based on magnetic tunneling

A new principle for a compact spin-based solid-state laser is proposed. It operates in the 1–100 THz regime, which is difficult to reach with small size lasers. Spin-flip processes in ferromagnetic conductors form a basis — the mechanism is due to a coupling of light to the exchange interaction i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Kadigrobov, A., Shekhter, R.I., Jonson, M.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2005
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/121766
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Novel laser based on magnetic tunneling / A. Kadigrobov, R.I. Shekhter, M. Jonson // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 463-470. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-121766
record_format dspace
spelling irk-123456789-1217662017-06-17T03:03:05Z Novel laser based on magnetic tunneling Kadigrobov, A. Shekhter, R.I. Jonson, M. Низкоразмерные и неупорядоченные системы A new principle for a compact spin-based solid-state laser is proposed. It operates in the 1–100 THz regime, which is difficult to reach with small size lasers. Spin-flip processes in ferromagnetic conductors form a basis — the mechanism is due to a coupling of light to the exchange interaction in magnetically ordered conductors via the dependence of the exchange constant on the conduction electron momenta. The interaction strength is proportional to the large exchange energy and exceeds the Zeeman interaction by orders of magnitude. A giant lasing effect is predicted in a system where a population inversion has been created by injection of spin-polarized electrons from one ferromagnetic conductor into another through an intermediate tunnel region or weak link; the magnetizations of the two ferromagnets have different orientations. We show that the laser frequency will be in the range 1–100 THz if the experimental data for ferromagnetic manganese perovskites with nearly 100% spin polarization are used. The optical gain is estimated to be gopt ~ 10⁷ cm⁻¹. This exceeds the gain of conventional semiconductor lasers by 3 or 4 orders of magnitude. An experimental configuration is proposed in order to solve heating problems at a relatively high threshold current density. 2005 Article Novel laser based on magnetic tunneling / A. Kadigrobov, R.I. Shekhter, M. Jonson // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 463-470. — Бібліогр.: 26 назв. — англ. 0132-6414 PACS: 75.70.–i http://dspace.nbuv.gov.ua/handle/123456789/121766 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкоразмерные и неупорядоченные системы
Низкоразмерные и неупорядоченные системы
spellingShingle Низкоразмерные и неупорядоченные системы
Низкоразмерные и неупорядоченные системы
Kadigrobov, A.
Shekhter, R.I.
Jonson, M.
Novel laser based on magnetic tunneling
Физика низких температур
description A new principle for a compact spin-based solid-state laser is proposed. It operates in the 1–100 THz regime, which is difficult to reach with small size lasers. Spin-flip processes in ferromagnetic conductors form a basis — the mechanism is due to a coupling of light to the exchange interaction in magnetically ordered conductors via the dependence of the exchange constant on the conduction electron momenta. The interaction strength is proportional to the large exchange energy and exceeds the Zeeman interaction by orders of magnitude. A giant lasing effect is predicted in a system where a population inversion has been created by injection of spin-polarized electrons from one ferromagnetic conductor into another through an intermediate tunnel region or weak link; the magnetizations of the two ferromagnets have different orientations. We show that the laser frequency will be in the range 1–100 THz if the experimental data for ferromagnetic manganese perovskites with nearly 100% spin polarization are used. The optical gain is estimated to be gopt ~ 10⁷ cm⁻¹. This exceeds the gain of conventional semiconductor lasers by 3 or 4 orders of magnitude. An experimental configuration is proposed in order to solve heating problems at a relatively high threshold current density.
format Article
author Kadigrobov, A.
Shekhter, R.I.
Jonson, M.
author_facet Kadigrobov, A.
Shekhter, R.I.
Jonson, M.
author_sort Kadigrobov, A.
title Novel laser based on magnetic tunneling
title_short Novel laser based on magnetic tunneling
title_full Novel laser based on magnetic tunneling
title_fullStr Novel laser based on magnetic tunneling
title_full_unstemmed Novel laser based on magnetic tunneling
title_sort novel laser based on magnetic tunneling
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2005
topic_facet Низкоразмерные и неупорядоченные системы
url http://dspace.nbuv.gov.ua/handle/123456789/121766
citation_txt Novel laser based on magnetic tunneling / A. Kadigrobov, R.I. Shekhter, M. Jonson // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 463-470. — Бібліогр.: 26 назв. — англ.
series Физика низких температур
work_keys_str_mv AT kadigrobova novellaserbasedonmagnetictunneling
AT shekhterri novellaserbasedonmagnetictunneling
AT jonsonm novellaserbasedonmagnetictunneling
first_indexed 2023-10-18T20:40:16Z
last_indexed 2023-10-18T20:40:16Z
_version_ 1796150807137091584