Novel laser based on magnetic tunneling
A new principle for a compact spin-based solid-state laser is proposed. It operates in the 1–100 THz regime, which is difficult to reach with small size lasers. Spin-flip processes in ferromagnetic conductors form a basis — the mechanism is due to a coupling of light to the exchange interaction i...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2005
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121766 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Novel laser based on magnetic tunneling / A. Kadigrobov, R.I. Shekhter, M. Jonson // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 463-470. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-121766 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1217662017-06-17T03:03:05Z Novel laser based on magnetic tunneling Kadigrobov, A. Shekhter, R.I. Jonson, M. Низкоразмерные и неупорядоченные системы A new principle for a compact spin-based solid-state laser is proposed. It operates in the 1–100 THz regime, which is difficult to reach with small size lasers. Spin-flip processes in ferromagnetic conductors form a basis — the mechanism is due to a coupling of light to the exchange interaction in magnetically ordered conductors via the dependence of the exchange constant on the conduction electron momenta. The interaction strength is proportional to the large exchange energy and exceeds the Zeeman interaction by orders of magnitude. A giant lasing effect is predicted in a system where a population inversion has been created by injection of spin-polarized electrons from one ferromagnetic conductor into another through an intermediate tunnel region or weak link; the magnetizations of the two ferromagnets have different orientations. We show that the laser frequency will be in the range 1–100 THz if the experimental data for ferromagnetic manganese perovskites with nearly 100% spin polarization are used. The optical gain is estimated to be gopt ~ 10⁷ cm⁻¹. This exceeds the gain of conventional semiconductor lasers by 3 or 4 orders of magnitude. An experimental configuration is proposed in order to solve heating problems at a relatively high threshold current density. 2005 Article Novel laser based on magnetic tunneling / A. Kadigrobov, R.I. Shekhter, M. Jonson // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 463-470. — Бібліогр.: 26 назв. — англ. 0132-6414 PACS: 75.70.–i http://dspace.nbuv.gov.ua/handle/123456789/121766 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкоразмерные и неупорядоченные системы Низкоразмерные и неупорядоченные системы |
spellingShingle |
Низкоразмерные и неупорядоченные системы Низкоразмерные и неупорядоченные системы Kadigrobov, A. Shekhter, R.I. Jonson, M. Novel laser based on magnetic tunneling Физика низких температур |
description |
A new principle for a compact spin-based solid-state laser is proposed. It operates in the
1–100 THz regime, which is difficult to reach with small size lasers. Spin-flip processes in ferromagnetic
conductors form a basis — the mechanism is due to a coupling of light to the exchange interaction
in magnetically ordered conductors via the dependence of the exchange constant on the
conduction electron momenta. The interaction strength is proportional to the large exchange energy
and exceeds the Zeeman interaction by orders of magnitude. A giant lasing effect is predicted
in a system where a population inversion has been created by injection of spin-polarized electrons
from one ferromagnetic conductor into another through an intermediate tunnel region or weak
link; the magnetizations of the two ferromagnets have different orientations. We show that the
laser frequency will be in the range 1–100 THz if the experimental data for ferromagnetic manganese
perovskites with nearly 100% spin polarization are used. The optical gain is estimated to be
gopt ~ 10⁷ cm⁻¹. This exceeds the gain of conventional semiconductor lasers by 3 or 4 orders of
magnitude. An experimental configuration is proposed in order to solve heating problems at a relatively
high threshold current density. |
format |
Article |
author |
Kadigrobov, A. Shekhter, R.I. Jonson, M. |
author_facet |
Kadigrobov, A. Shekhter, R.I. Jonson, M. |
author_sort |
Kadigrobov, A. |
title |
Novel laser based on magnetic tunneling |
title_short |
Novel laser based on magnetic tunneling |
title_full |
Novel laser based on magnetic tunneling |
title_fullStr |
Novel laser based on magnetic tunneling |
title_full_unstemmed |
Novel laser based on magnetic tunneling |
title_sort |
novel laser based on magnetic tunneling |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2005 |
topic_facet |
Низкоразмерные и неупорядоченные системы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/121766 |
citation_txt |
Novel laser based on magnetic tunneling / A. Kadigrobov, R.I. Shekhter, M. Jonson // Физика низких температур. — 2005. — Т. 31, № 3-4. — С. 463-470. — Бібліогр.: 26 назв. — англ. |
series |
Физика низких температур |
work_keys_str_mv |
AT kadigrobova novellaserbasedonmagnetictunneling AT shekhterri novellaserbasedonmagnetictunneling AT jonsonm novellaserbasedonmagnetictunneling |
first_indexed |
2023-10-18T20:40:16Z |
last_indexed |
2023-10-18T20:40:16Z |
_version_ |
1796150807137091584 |