Nonlinear convective heat transport in multiple magnetized electron temperature filaments

Results are presented from a basic electron heat transport experiment consisting of multiple magnetized electron temperature filaments in close proximity. This arrangement samples cross-field transport from nonlinear drift-Alfven waves and is used to study elements of chaotic heat flow. Experiments...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Sydora, R.D., Van Compernolle, Karbashewski, S., Morales, G.J., Maggs, J.E.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/122142
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Nonlinear convective heat transport in multiple magnetized electron temperature filaments / R.D. Sydora, B. Van Compernolle, S. Karbashewski, G.J. Morales, J.E. Maggs // Вопросы атомной науки и техники. — 2017. — № 1. — С. 100-103. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-122142
record_format dspace
spelling irk-123456789-1221422017-06-28T03:03:02Z Nonlinear convective heat transport in multiple magnetized electron temperature filaments Sydora, R.D. Van Compernolle Karbashewski, S. Morales, G.J. Maggs, J.E. Динамика плазмы и взаимодействие плазма-стенка Results are presented from a basic electron heat transport experiment consisting of multiple magnetized electron temperature filaments in close proximity. This arrangement samples cross-field transport from nonlinear drift-Alfven waves and is used to study elements of chaotic heat flow. Experiments are performed in the Large Plasma Device (LAPD) at the University of California. A biased LaB₆ cathode injects low energy electrons (below ionization energy) along a strong magnetic field into a pre-existing large and cold plasma forming an electron temperature filament embedded in a colder plasma, and far from the machine walls. A carbon masking plate with several holes is used to create 3 electron temperature filaments. Drift-Alfven and thermal waves from a single filament have been characterized and compared to previous studies with a different electron beam source. The 3-filament case exhibits a complex wave pattern and enhanced cross-field transport. Представлены результаты изучения переноса тепла между несколькими замагниченными нитями с электронной температурой, находящимися в непосредственной близости. Такое расположение позволяет изучать перенос тепла поперек поля из-за нелинейных дрейфово-альфвеновских волн и используется для изучения составных частей хаотического теплового потока. Эксперименты проводятся на LAPD (Large Plasma Device) в Университете Калифорнии. Смещённый LaB₆-катод инжектирует низкоэнергетичные электроны (ниже энергии ионизации) вдоль сильного магнитного поля в предварительно созданную холодную плазму больших размеров и создаёт вкраплённые нити электронной температуры вдали от стенок камеры установки. Углеродная накладка с несколькими отверстиями используется для создания трёх нитей с электронными температурами. Изучены дрейфово-альфвеновские и тепловые волны от одной нити и проведено сравнение с предыдущими результатами, полученными в другом источнике электронов. Случай с тремя нитями демонстрирует сложную волновую картину и повышенный перенос поперёк поля. Представлено результати вивчення перенесення тепла між декількома замагніченими нитками з електронною температурою, які знаходяться в безпосередній близькості. Таке розташування дозволяє вивчати перенесення тепла поперек поля через нелінійні дрейфово-альфвенівські хвилі та використовується для вивчення складових частин хаотичного теплового потоку. Експерименти проводяться на LAPD (Large Plasma Device) в Університеті Каліфорнії. Зміщений LaB₆-катод інжектує низькоенергетичні електрони (нижче енергії іонізації) уздовж сильного магнітного поля в попередньо створену холодну плазму великих розмірів і створює украплені нитки електронної температури далеко від стінок камери установки. Вуглецева накладка з декількома отворами використовується для створення трьох ниток з електронними температурами. Вивчено дрейфово-альфвенівські та теплові хвилі від однієї нитки та проведене порівняння з попередніми результатами, що отримані в іншому джерелі електронів. Випадок з трьома нитками демонструє складну хвильову картину і підвищений перенос поперек поля. 2017 Article Nonlinear convective heat transport in multiple magnetized electron temperature filaments / R.D. Sydora, B. Van Compernolle, S. Karbashewski, G.J. Morales, J.E. Maggs // Вопросы атомной науки и техники. — 2017. — № 1. — С. 100-103. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 52.25.Fi, 52.25.Gj, 52.65.Tt http://dspace.nbuv.gov.ua/handle/123456789/122142 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Динамика плазмы и взаимодействие плазма-стенка
Динамика плазмы и взаимодействие плазма-стенка
spellingShingle Динамика плазмы и взаимодействие плазма-стенка
Динамика плазмы и взаимодействие плазма-стенка
Sydora, R.D.
Van Compernolle
Karbashewski, S.
Morales, G.J.
Maggs, J.E.
Nonlinear convective heat transport in multiple magnetized electron temperature filaments
Вопросы атомной науки и техники
description Results are presented from a basic electron heat transport experiment consisting of multiple magnetized electron temperature filaments in close proximity. This arrangement samples cross-field transport from nonlinear drift-Alfven waves and is used to study elements of chaotic heat flow. Experiments are performed in the Large Plasma Device (LAPD) at the University of California. A biased LaB₆ cathode injects low energy electrons (below ionization energy) along a strong magnetic field into a pre-existing large and cold plasma forming an electron temperature filament embedded in a colder plasma, and far from the machine walls. A carbon masking plate with several holes is used to create 3 electron temperature filaments. Drift-Alfven and thermal waves from a single filament have been characterized and compared to previous studies with a different electron beam source. The 3-filament case exhibits a complex wave pattern and enhanced cross-field transport.
format Article
author Sydora, R.D.
Van Compernolle
Karbashewski, S.
Morales, G.J.
Maggs, J.E.
author_facet Sydora, R.D.
Van Compernolle
Karbashewski, S.
Morales, G.J.
Maggs, J.E.
author_sort Sydora, R.D.
title Nonlinear convective heat transport in multiple magnetized electron temperature filaments
title_short Nonlinear convective heat transport in multiple magnetized electron temperature filaments
title_full Nonlinear convective heat transport in multiple magnetized electron temperature filaments
title_fullStr Nonlinear convective heat transport in multiple magnetized electron temperature filaments
title_full_unstemmed Nonlinear convective heat transport in multiple magnetized electron temperature filaments
title_sort nonlinear convective heat transport in multiple magnetized electron temperature filaments
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Динамика плазмы и взаимодействие плазма-стенка
url http://dspace.nbuv.gov.ua/handle/123456789/122142
citation_txt Nonlinear convective heat transport in multiple magnetized electron temperature filaments / R.D. Sydora, B. Van Compernolle, S. Karbashewski, G.J. Morales, J.E. Maggs // Вопросы атомной науки и техники. — 2017. — № 1. — С. 100-103. — Бібліогр.: 16 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT sydorard nonlinearconvectiveheattransportinmultiplemagnetizedelectrontemperaturefilaments
AT vancompernolle nonlinearconvectiveheattransportinmultiplemagnetizedelectrontemperaturefilaments
AT karbashewskis nonlinearconvectiveheattransportinmultiplemagnetizedelectrontemperaturefilaments
AT moralesgj nonlinearconvectiveheattransportinmultiplemagnetizedelectrontemperaturefilaments
AT maggsje nonlinearconvectiveheattransportinmultiplemagnetizedelectrontemperaturefilaments
first_indexed 2025-07-08T21:14:09Z
last_indexed 2025-07-08T21:14:09Z
_version_ 1837114853600264192
fulltext PLASMA DYNAMICS AND PLASMA-WALL INTERACTION ISSN 1562-6016. ВАНТ. 2017. №1(107) 100 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 100-103. NONLINEAR CONVECTIVE HEAT TRANSPORT IN MULTIPLE MAGNETIZED ELECTRON TEMPERATURE FILAMENTS R.D. Sydora 1 , B. Van Compernolle 2 , S. Karbashewski 1 , G.J. Morales 2 , J.E. Maggs 2 1 Department of Physics, University of Alberta, Edmonton, Canada; 2 Department of Physics and Astronomy, University of California, Los Angeles, USA Results are presented from a basic electron heat transport experiment consisting of multiple magnetized electron temperature filaments in close proximity. This arrangement samples cross-field transport from nonlinear drift- Alfven waves and is used to study elements of chaotic heat flow. Experiments are performed in the Large Plasma Device (LAPD) at the University of California. A biased LaB6 cathode injects low energy electrons (below ionization energy) along a strong magnetic field into a pre-existing large and cold plasma forming an electron temperature filament embedded in a colder plasma, and far from the machine walls. A carbon masking plate with several holes is used to create 3 electron temperature filaments. Drift-Alfven and thermal waves from a single filament have been characterized and compared to previous studies with a different electron beam source. The 3- filament case exhibits a complex wave pattern and enhanced cross-field transport. PACS: 52.25.Fi, 52.25.Gj, 52.65.Tt INTRODUCTION Electron heat transport in magnetized plasmas remains one of the active research topics within the plasma community, primarily because of its relevance to achieving controlled fusion. Steep cross-field pressure gradients in magnetized plasmas can lead to the spontaneous growth in temperature, density and magnetic fluctuations once a certain threshold gradient is exceeded. These fluctuations give rise to complex heat transport processes that result in energy losses exceeding predictions based on classical transport due to Coulomb collisions [1-3]. To simplify the study of electron heat transport, a series of basic experiments have been performed over the past decade in the Large Plasma Device (LAPD) [4] operated by the Basic Plasma Science Facility (BaPSF) at the University of California, Los Angeles (UCLA). Since the details of the experimental arrangement and the major findings have been previously published [5- 11], only a brief description is given here. The generic experiment uses a small (3 mm diameter), single-crystal lanthanum hexaboride (LaB6) cathode to inject a low- voltage electron beam into a strongly magnetized (1 kG), cold, afterglow-plasma. The low-voltage beam acts as an ideal heat source that produces a long (~8 m), narrow (~5 mm in radius) temperature filament that is well separated from the walls of the machine. The existence of a transition from a regime of classical transport to one of anomalous transport has been established through detailed measurements. During the period of classical transport, drift-Alfvén waves grow linearly, driven by the temperature gradient [12]. In a macroscopic model of the temperature filament the evolution can be described in terms of an advective- diffusive heat equation [13]. The dimensionless number associated with this partial differential equation is known as the Péclet number (Pe) and is essentially the ratio of the rate of advection by the ExB flow (VExB) to the rate of heat diffusion( ). In the case of classical diffusion this ratio scales like Pe=LVExB/ which for classical heat transport becomes Pe = 0.32 ( e e)(e /Te), Where e is the electron cyclotron frequency, e the electron-ion collision time and is the electric potential. In the regime where Pe > 1 convection dominates and temperature gradients tend to be steeper. For the present experiments the Péclet number is typically between 3 and 30 and we will be operating the filament experiments in the higher Pe number regime so that nonlinear convective processes associated with drift- Alfven waves dominate. A very recent experiment designed to study electron heat transport, using a ring source that produces a hollow, cylindrical heat region embedded in the background cold plasma, has yielded some intriguing results exhibiting intermittent collapses of the plasma pressure profile [14]. These intermittent collapses are interpreted as transport avalanches and are experimentally shown to be associated with unstable drift-Alfven waves. To create the hollow electron temperature filament a new source was designed. Instead of using a LaB6 crystal as in the earlier experiments a secondary disk-shaped cathode [15] made of LaB6 is inserted into the machine at the opposite end of the barium oxide (BaO) coated cathode. The front side of the LaB6 disk, which is 8 cm in diameter, is masked by carbon plates to leave a ring of exposed LaB6 with 4 cm inner diameter and 6cm outer diameter. A modification of this source was used for the generation of multiple temperature filaments as will be explained in the next section. In this paper we investigate electron temperature filament-filament interactions within the context of nonlinear convective heat transport using similar base parameters as in the previous experiments. Previous results from the 3 mm filament experiments using single crystals have shown that deterministic chaos drives the cross-field transport. In the three filament scenario we expect chaotic transport between the three filaments will be enhanced since the electrons are ExB convected from one filament to the next when they are in close proximity. 1. EXPERIMENTAL SETUP For the first set of experiments we use the cathode with carbon masking technique to create several filaments. Working with the 8 cm diameter LaB6 ISSN 1562-6016. ВАНТ. 2017. №1(107) 101 secondary cathode we apply a carbon mask with 3 separate holes, each 1.0 cm diameter, and with hole separation of 1.5 cm from center-to-center. The location of the LaB6 secondary cathode and carbon mask is shown in Fig. 1. The small spacing between holes is chosen such that the cross-field spatial interaction between the drift-Alfven waves will be enhanced, thus modifying the transport behavior. Emission currents of the LaB6 cathode are approximately a few amperes and the temperature of the cold background plasma rises from 0.25 eV to about 5 eV when a bias voltage of 10…20 V is applied. The densities in the afterglow phase of the main discharge are about 10 12 cm -3 and the background magnetic field of 1000 G was used. a b Fig. 1. Schematic of the experimental setup. The main LAPD cathode-anode operates at 1 Hz, with 15 ms pulses. When the LAPD plasma reaches steady state, the LaB6 cathode-anode is pulsed on. Probe access through ball valves at multiple z locations allows for three dimensional probing of the plasma (a); photo of the carbon masking plate situated in front of the LaB6 cathode (b) 2. RESULTS OF MULTI-FILAMENT EXPERIMENT The results of Langmuir probe measurements in a 2D plane located approximately 3m from the LaB6 cathode source are shown in Fig. 2. In this figure the ion saturation current is shown at three different times following the source turn-on. It clearly shows the presence of distinct filaments that begin to interact nonlinearly within a fraction of a milli-second. In the next set of results we examine the spatial structure of the various low frequency fluctuations that are present. In Fig. 3 the amplitude of the ion saturation current in the 2D plane is shown for one of the dominant low frequency modes (drift-Alfven) at 20.8 kHz. a b c Fig. 2. Sequence of frames at three different times 13.041 ms (a); 13.14 ms (b); and 13.219 ms (c); depicting the Langmuir probe measurements of ion saturation current in a 2D plane, located about 3 m from the LaB6 cathode source These modes are localized to the maximum thermal gradient region in each filament and we observe that they are only weakly spatially overlapping. The azimuthal mode numbers of these drift-Alfven waves ranges from m=1…3 on each filament. 102 ISSN 1562-6016. ВАНТ. 2017. №1(107) Fig. 3. Amplitude of the ion saturation current in a 2D plane for fixed frequency 20.8 kHz. Bias voltage of 20 V and 1 kG magnetic field were used a b Fig. 4. Frequency versus y position at fixed x location indicated by dashed line in Fig. 3, for a)bias voltage of 10 V, and b) bias voltage of 20 V. Magnetic field of 1 kG was used Different frequencies were examined, spatially at a fixed x-position, along a y-cut indicated by a dotted line in Fig. 3. As illustrated in Fig. 4,a, for bias voltage of 10 V and 1 kG magnetic field, the 20.8 kHz drift-Alfven modes are not strongly overlapped, however, the 1…5 kHz fluctuations are more significantly interacting. The origin of these lower frequency eigenmodes is currently being investigated. When the bias voltage is raised to 20 V there is an enhancement of the 1…5 kHz range fluctuations and a modification of the amplitude around 20 kHz. This is partially due to the enhanced convective transport and rotation of the three filaments. 3. DRIFT-ALFVEN MODES For determination of the temperature gradient-driven drift-Alfven mode frequencies it is useful to first consider a simple, local description of the drift-Alfvén instability associated with a pure electron temperature gradient in order to identify the parameter dependencies. The relevant dispersion relation is given by Eq. (30) of Ref. [12] 0)( 2 1 1 * 22 2 22 e Az s Z Vk k , where the local electron diamagnetic drift frequency is with Ωe the electron gyrofrequency , the temperature scale length, kθ = m/r the local azimuthal wave number, and s =cs / Ωi the ion sound gyroradius, defined as the ratio of the ion sound speed cs to the ion cyclotron frequency Ωi. The local electron thermal velocity is Ve and the Alfvén speed is VA, while Z corresponds to the derivative, with respect to argument, of the standard plasma dispersion function. In the dispersion relation the terms inside the left bracket describe the zero electron mass (MHD) shear Alfvén wave branch, while the terms inside the right bracket describe the collisionless, drift-wave branch. For small transverse scales (i.e., large kθ), as is appropriate for this study, the two branches are coupled and result in a collective mode known as the drift-Alfvén wave, which can become unstable for certain values of the azimuthal mode number, m, and axial wave number kz. The accurate calculation of the linear growth rates and real frequencies requires the solution of coupled differential equations for the electric and magnetic potentials to determine the complex eigenfrequencies and the associated eigenfunctions that satisfy the proper boundary conditions. Such an analysis has been performed for the temperature filaments considered here. The range of excited azimuthal mode numbers is m~1-6, the frequency of oscillations is Reω 0.09 Ωi, and the higher mode-numbers show relatively fast growth (comparable to the real frequency). The linear theory predicts a dominant frequency of approximately 25 kHz which is in rough agreement with the observed values. CONCLUSIONS In this paper results are presented from a basic electron heat transport experiment designed to produce multiple magnetized electron temperature filaments in close proximity. This arrangement samples cross-field transport from nonlinear drift-Alfven waves and is used to study elements of chaotic heat flow. Experiments are performed in the Large Plasma Device (LAPD) at the ISSN 1562-6016. ВАНТ. 2017. №1(107) 103 University of California. A biased LaB6 cathode injects low energy electrons (below ionization energy) along a strong magnetic field into a pre-existing large and cold plasma forming an electron temperature filament embedded in a colder plasma, and far from the machine walls. A carbon masking plate with several holes is used to create 3 electron temperature filaments. Drift-Alfven and thermal waves from a single filament have been characterized and compared to previous studies with a different electron beam source. The 3-filament case exhibits a complex wave pattern and enhanced cross- field transport. The nonlinear interaction amongst the filaments is dominated by fluctuations in the range 1…5 kHz which is much lower than the temperature gradient-driven drift-Alfven modes, which are in the 20…30 kHz frequency range. Characterization of the nonlinear eigenmodes is currently underway with guidance from a nonlinear gyrokinetic particle simulation model [16] and results will be reported in a separate paper. ACKNOWLEDGEMENTS The work of RDS and SK is supported by the Natural Science and Engineering Research Council (NSERC) of Canada and that of JEM, GJM and BVC is performed under the auspices of the Basic Plasma Science Facility (BaPSF) at UCLA which is supported by a DOE-NSF cooperative agreement. REFERENCES 1. W. Horton. Turbulent transport in magnetized plasmas. World Scientific Publishing Company. 2012, p. 338. 2. J. García, J. Dies, F. Castejón, K. Yamazaki // Phys. Plasmas. 2007, v. 14, p. 102511. 3. F. Ryter, G. Tardini, F. De Luca, H.-U. Fahrbach, F. Imbeaux, A. Jacchia, K.K. Kirov, F. Leuterer, P. Mantica, A.G. Peeters, G. Pereverzev, W. Suttrop and ASDEX Upgrade Team // Nucl. Fusion. 2003, v. 43, p. 1396. 4. W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, J. Maggs // Rev. Sci. Instrum. 1991, v. 62, p. 2875. 5. A.T. Burke, J.E. Maggs, G.J. Morales // Phys. Rev. Lett. 1998, v. 81, p. 3659. 6. A.T. Burke, J.E. Maggs, G.J. Morales // Phys. Rev. Lett. 2000, v. 84, p. 1451. 7. A.T. Burke, J.E. Maggs, G.J. Morales // Phys. Plasmas. 2000, v. 7, p. 544. 8. A.T. Burke, J.E. Maggs, G.J. Morales // Phys. Plasmas. 2000, v. 7, p. 1397. 9. D.C. Pace, M. Shi, J.E. Maggs, G.J. Morales, and T.A. Carter // Phys. Rev. Lett. 2008, v. 101, p.085001. 10. D.C. Pace, M. Shi, J.E. Maggs, G.J. Morales, T.A. Carter // Phys. Plasmas. 2008, v. 15, p. 122304. 11. J.E. Maggs, G.J. Morales // Plasma Phys. Control. Fusion. 2013, v. 55, p. 085015. 12. J.R. Peñano, G.J. Morales, J.E. Maggs // Phys. Plasmas. 2000, v. 7, p. 144. 13. M. Shi, D.C. Pace, G.J. Morales, J.E. Maggs, T.A. Carter // Phys. Plasmas. 2009, v. 16, p. 062306. 14. B. Van Compernolle, G.J. Morales, J.E. Maggs, R.D. Sydora // Phys. Rev. E. 2015, v. 91, p. 031102(R). 15. B. Van Compernolle, W. Gekelman, P. Pribyl, C. Cooper // Phys. Plasmas. 2011, v. 18, p. 123501. 16. R.D. Sydora, G.J. Morales, J.E. Maggs, and B. Van Compernolle // Phys. Plasmas. 2015, v. 22, p. 102303. Article received 27.12.2016 НЕЛИНЕЙНЫЙ КОНВЕКТИВНЫЙ ПЕРЕНОС ТЕПЛА В НЕСКОЛЬКИХ ЗАМАГНИЧЕННЫХ НИТЯХ С ЭЛЕКТРОННОЙ ТЕМПЕРАТУРОЙ R.D. Sydora, B. Van Compernolle, S. Karbashewski, G.J. Morales, J.E. Maggs Представлены результаты изучения переноса тепла между несколькими замагниченными нитями с электронной температурой, находящимися в непосредственной близости. Такое расположение позволяет изучать перенос тепла поперек поля из-за нелинейных дрейфово-альфвеновских волн и используется для изучения составных частей хаотического теплового потока. Эксперименты проводятся на LAPD (Large Plasma Device) в Университете Калифорнии. Смещённый LaB6-катод инжектирует низкоэнергетичные электроны (ниже энергии ионизации) вдоль сильного магнитного поля в предварительно созданную холодную плазму больших размеров и создаёт вкраплённые нити электронной температуры вдали от стенок камеры установки. Углеродная накладка с несколькими отверстиями используется для создания трёх нитей с электронными температурами. Изучены дрейфово-альфвеновские и тепловые волны от одной нити и проведено сравнение с предыдущими результатами, полученными в другом источнике электронов. Случай с тремя нитями демонстрирует сложную волновую картину и повышенный перенос поперёк поля. НЕЛІНІЙНЕ КОНВЕКТИВНЕ ПЕРЕНЕСЕННЯ ТЕПЛА В КІЛЬКОХ ЗАМАГНІЧЕНИХ НИТКАХ З ЕЛЕКТРОННОЮ ТЕМПЕРАТУРОЮ R.D. Sydora, B. Van Compernolle, S. Karbashewski, G.J. Morales, J.E. Maggs Представлено результати вивчення перенесення тепла між декількома замагніченими нитками з електронною температурою, які знаходяться в безпосередній близькості. Таке розташування дозволяє вивчати перенесення тепла поперек поля через нелінійні дрейфово-альфвенівські хвилі та використовується для вивчення складових частин хаотичного теплового потоку. Експерименти проводяться на LAPD (Large Plasma Device) в Університеті Каліфорнії. Зміщений LaB6-катод інжектує низькоенергетичні електрони (нижче енергії іонізації) уздовж сильного магнітного поля в попередньо створену холодну плазму великих розмірів і створює украплені нитки електронної температури далеко від стінок камери установки. Вуглецева накладка з декількома отворами використовується для створення трьох ниток з електронними температурами. Вивчено дрейфово-альфвенівські та теплові хвилі від однієї нитки та проведене порівняння з попередніми результатами, що отримані в іншому джерелі електронів. Випадок з трьома нитками демонструє складну хвильову картину і підвищений перенос поперек поля.