Spectrol properties of symplectic integrators for problem on motion of a free rigid body

In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies pe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Khlistunova, N.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2003
Назва видання:Механика твердого тела
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/123732
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-123732
record_format dspace
spelling irk-123456789-1237322017-09-10T03:03:32Z Spectrol properties of symplectic integrators for problem on motion of a free rigid body Khlistunova, N.V. In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies per each integration step. Roth schemes are implemented and tested against Runge-Kutta-Fehlberg fifth order method, the represented computational results are satisfactory. 2003 Article Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос. 0321-1975 http://dspace.nbuv.gov.ua/handle/123456789/123732 531.38 en Механика твердого тела Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies per each integration step. Roth schemes are implemented and tested against Runge-Kutta-Fehlberg fifth order method, the represented computational results are satisfactory.
format Article
author Khlistunova, N.V.
spellingShingle Khlistunova, N.V.
Spectrol properties of symplectic integrators for problem on motion of a free rigid body
Механика твердого тела
author_facet Khlistunova, N.V.
author_sort Khlistunova, N.V.
title Spectrol properties of symplectic integrators for problem on motion of a free rigid body
title_short Spectrol properties of symplectic integrators for problem on motion of a free rigid body
title_full Spectrol properties of symplectic integrators for problem on motion of a free rigid body
title_fullStr Spectrol properties of symplectic integrators for problem on motion of a free rigid body
title_full_unstemmed Spectrol properties of symplectic integrators for problem on motion of a free rigid body
title_sort spectrol properties of symplectic integrators for problem on motion of a free rigid body
publisher Інститут прикладної математики і механіки НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/123732
citation_txt Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос.
series Механика твердого тела
work_keys_str_mv AT khlistunovanv spectrolpropertiesofsymplecticintegratorsforproblemonmotionofafreerigidbody
first_indexed 2023-10-18T20:44:49Z
last_indexed 2023-10-18T20:44:49Z
_version_ 1796151002397671424