Spectrol properties of symplectic integrators for problem on motion of a free rigid body
In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies pe...
Збережено в:
Дата: | 2003 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2003
|
Назва видання: | Механика твердого тела |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/123732 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-123732 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1237322017-09-10T03:03:32Z Spectrol properties of symplectic integrators for problem on motion of a free rigid body Khlistunova, N.V. In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies per each integration step. Roth schemes are implemented and tested against Runge-Kutta-Fehlberg fifth order method, the represented computational results are satisfactory. 2003 Article Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос. 0321-1975 http://dspace.nbuv.gov.ua/handle/123456789/123732 531.38 en Механика твердого тела Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies per each integration step. Roth schemes are implemented and tested against Runge-Kutta-Fehlberg fifth order method, the represented computational results are satisfactory. |
format |
Article |
author |
Khlistunova, N.V. |
spellingShingle |
Khlistunova, N.V. Spectrol properties of symplectic integrators for problem on motion of a free rigid body Механика твердого тела |
author_facet |
Khlistunova, N.V. |
author_sort |
Khlistunova, N.V. |
title |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body |
title_short |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body |
title_full |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body |
title_fullStr |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body |
title_full_unstemmed |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body |
title_sort |
spectrol properties of symplectic integrators for problem on motion of a free rigid body |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2003 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/123732 |
citation_txt |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос. |
series |
Механика твердого тела |
work_keys_str_mv |
AT khlistunovanv spectrolpropertiesofsymplecticintegratorsforproblemonmotionofafreerigidbody |
first_indexed |
2023-10-18T20:44:49Z |
last_indexed |
2023-10-18T20:44:49Z |
_version_ |
1796151002397671424 |