Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле
Для вполне интегрируемой системы с гремя степенями свободы, описывающей движение твердого гола в двойном си-новом иоле, подчиненного условиям типа Ковалевской (А = В = 2С. центры оснащенности лежат в экваториальной плоскости эллипсоида инерции), найдено множество критических точек интегрального отоб...
Збережено в:
Дата: | 2004 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2004
|
Назва видання: | Механика твердого тела |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/123738 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле / М.П. Харламов // Механика твердого тела: Межвед. сб. науч. тр. — 2004. — Вип. 34. — С. 47-58. — Бібліогр.: 9 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-123738 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1237382017-09-10T03:03:37Z Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле Харламов, М.П. Для вполне интегрируемой системы с гремя степенями свободы, описывающей движение твердого гола в двойном си-новом иоле, подчиненного условиям типа Ковалевской (А = В = 2С. центры оснащенности лежат в экваториальной плоскости эллипсоида инерции), найдено множество критических точек интегрального отображения, порожденного гремя интегралами в инволюции. Оно состоит из инвариантных подмножеств, на которых индуцированная динамическая система почти всюду гамильтонова с двумя степенями свободы. Критическому множеству сопоставлен его образ - бифуркационная диаграмма в пространстве консгант первых интегралов, которая лежит в объединении грех поверхностей. Две из них заданы явными уравнениями, а последняя - параметрическими, в которых роль параметров играю! постоянная одного из общих интегралов и кратный корень многочлена, обобщающего резольвенту Эйлера второго многочлена Ковалевской. Проведена аналогия с классами Аппельрота в задаче о движении волчка Ковалевской виоле силы тяжести. 2004 Article Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле / М.П. Харламов // Механика твердого тела: Межвед. сб. науч. тр. — 2004. — Вип. 34. — С. 47-58. — Бібліогр.: 9 назв. — рос. 0321-1975 http://dspace.nbuv.gov.ua/handle/123456789/123738 531.38 ru Механика твердого тела Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
description |
Для вполне интегрируемой системы с гремя степенями свободы, описывающей движение твердого гола в двойном си-новом иоле, подчиненного условиям типа Ковалевской (А = В = 2С. центры оснащенности лежат в экваториальной плоскости эллипсоида инерции), найдено множество критических точек интегрального отображения, порожденного гремя интегралами в инволюции. Оно состоит из инвариантных подмножеств, на которых индуцированная динамическая система почти всюду гамильтонова с двумя степенями свободы. Критическому множеству сопоставлен его образ - бифуркационная диаграмма в пространстве консгант первых интегралов, которая лежит в объединении грех поверхностей. Две из них заданы явными уравнениями, а последняя - параметрическими, в которых роль параметров играю! постоянная одного из общих интегралов и кратный корень многочлена, обобщающего резольвенту Эйлера второго многочлена Ковалевской. Проведена аналогия с классами Аппельрота в задаче о движении волчка Ковалевской виоле силы тяжести. |
format |
Article |
author |
Харламов, М.П. |
spellingShingle |
Харламов, М.П. Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле Механика твердого тела |
author_facet |
Харламов, М.П. |
author_sort |
Харламов, М.П. |
title |
Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле |
title_short |
Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле |
title_full |
Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле |
title_fullStr |
Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле |
title_full_unstemmed |
Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле |
title_sort |
критическое множество и бифуркационная диаграмма задачи о движении волчка ковалевской в двойном поле |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2004 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/123738 |
citation_txt |
Критическое множество и бифуркационная диаграмма задачи о движении волчка Ковалевской в двойном поле / М.П. Харламов // Механика твердого тела: Межвед. сб. науч. тр. — 2004. — Вип. 34. — С. 47-58. — Бібліогр.: 9 назв. — рос. |
series |
Механика твердого тела |
work_keys_str_mv |
AT harlamovmp kritičeskoemnožestvoibifurkacionnaâdiagrammazadačiodviženiivolčkakovalevskojvdvojnompole |
first_indexed |
2023-10-18T20:44:50Z |
last_indexed |
2023-10-18T20:44:50Z |
_version_ |
1796151003031011328 |