Малые движения и нормальные колебания баротропного газа в ограниченной области
Рассматриваются эволюционная и спектральная задачи, порождённые малыми движениями сжимаемого баротропного вязкого и невязкого газа в ограниченной области. Доказано, что начально-краевая задача о малых движениях идеального баротропного газа в замкнутом неподвижном сосуде имеет единственное сильное ре...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2010
|
Назва видання: | Труды Института прикладной математики и механики |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/123937 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Малые движения и нормальные колебания баротропного газа в ограниченной области / Е.А. Пронина // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2010. — Т. 20. — С. 130-138. — Бібліогр.: 4 назв. — рос. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Рассматриваются эволюционная и спектральная задачи, порождённые малыми движениями сжимаемого баротропного вязкого и невязкого газа в ограниченной области. Доказано, что начально-краевая задача о малых движениях идеального баротропного газа в замкнутом неподвижном сосуде имеет единственное сильное решение на любом отрезке времени. В соответствующей спектральной задаче установлено, что ее спектр состоит из бесконечнократного нулевого собственного значения (очевидное решение) и двух ветвей конечнократных собственных значений, локализованных: в окрестности мнимой оси. Этим ветвям отвечает совокупность корневых элементов, образующая базис Абеля-Лидского в подпространстве, ортогональном к подпространству очевидных решений. Аналогичные вопросы рассмотрены и для случая вязкого газа. |
---|