Властивості розподілу випадкової величини, L-символи якої в зображенні знакододатним рядом Люрота, є незалежними

В роботi вивчається лебегiвська структура, тополого-метричнi та фрактальнi властивостi розподiлiв випадкових величин, представлених рядами Люрота (L-зображеннями) за розподiлами своїх цифр L-зображення i навпаки. Доведено, що випадкова величина з незалежними L-символами має або чисто дискретний, або...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Жихарєва, Ю.І., Працьовитий, М.В.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Назва видання:Труды Института прикладной математики и механики
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124051
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Властивості розподілу випадкової величини, L-символи якої в зображенні знакододатним рядом Люрота, є незалежними / Ю.І. Жихарєва, М.В. Працьовитий // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2011. — Т. 23. — С. 73-85. — Бібліогр.: 16 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В роботi вивчається лебегiвська структура, тополого-метричнi та фрактальнi властивостi розподiлiв випадкових величин, представлених рядами Люрота (L-зображеннями) за розподiлами своїх цифр L-зображення i навпаки. Доведено, що випадкова величина з незалежними L-символами має або чисто дискретний, або чисто абсолютно неперервний, або чисто сингулярно неперервний розподiл; знайдено критерi належностi кожному з чистих типiв. Доведено, що переважна бiльшiсть цих розподiлiв є сингулярними, тобто зосередженими на множинах нульової мiри Лебега (фракталах). Описано тополого-метричнi властивостi спектрiв розподiлiв випадкових величин, та властивостi х функцiй розподiлу.