3-D математическая модель температурного поля непрерывного слитка
Представлена трехмерная математическая модель нестационарного температурного поля непрерывнолитой заготовки и стенок кристаллизатора. Модель учитывает зависимости теплофизических параметров от температуры, наличие зазора между поверхностью слитка и стенкой кристаллизатора, характер водяного охлажден...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2011
|
Назва видання: | Труды Института прикладной математики и механики |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124053 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | 3-D математическая модель температурного поля непрерывного слитка / А.А. Иванова // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2011. — Т. 23. — С. 100-109. — Бібліогр.: 10 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-124053 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1240532017-09-20T03:03:08Z 3-D математическая модель температурного поля непрерывного слитка Иванова, А.А. Представлена трехмерная математическая модель нестационарного температурного поля непрерывнолитой заготовки и стенок кристаллизатора. Модель учитывает зависимости теплофизических параметров от температуры, наличие зазора между поверхностью слитка и стенкой кристаллизатора, характер водяного охлаждения кристаллизатора, зависимость граничных условий от конфигурации и режимов работы зоны вторичного охлаждения. Положение границы раздела фаз определяется из условий Стефана. Задача численно решена методом конечных разностей. Представлены и проанализированы результаты расчетов. Представлена тривимiрна математична модель нестацiонарного температурного поля безперервнолитої заготовки й стiнок кристалiзатора. Модель враховує залежнiсть теплофiзичних параметрiв вiд температури, наявнiсть зазору мiж поверхнiстю злитка й стiнкой кристалiзатора, характер водяного охолодження кристалiзатора, залежнiсть граничних умов вiд конфiгурацiї й режимiв роботи зони вторинного охолодження. Положення межi розподiлу фаз визначається умовами Стефана. Задачу чисельно розв’язано методом кiнцевих рiзниць. Представлено i проаналiзовано результати розрахункiв. The three-dimensional mathematical model of nonstationary temperature field of continuous ingot and mold walls is presented. Model takes into account dependence of thermophysical parameters on the temperature, the presence of the gap between the surface of the ingot and the mold wall, the mode of mold water-cooling, the dependence of the boundary conditions on the configuration and modes of the secondary cooling system. The position of the interface is determined from the Stefan condition. The numerical solution of the problem is performed by the finite-difference method. The results of numerical solution are presented and analysed. 2011 Article 3-D математическая модель температурного поля непрерывного слитка / А.А. Иванова // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2011. — Т. 23. — С. 100-109. — Бібліогр.: 10 назв. — рос. 1683-4720 http://dspace.nbuv.gov.ua/handle/123456789/124053 681.5:51-74 ru Труды Института прикладной математики и механики Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
description |
Представлена трехмерная математическая модель нестационарного температурного поля непрерывнолитой заготовки и стенок кристаллизатора. Модель учитывает зависимости теплофизических параметров от температуры, наличие зазора между поверхностью слитка и стенкой кристаллизатора, характер водяного охлаждения кристаллизатора, зависимость граничных условий от конфигурации и режимов работы зоны вторичного охлаждения. Положение границы раздела фаз определяется из условий Стефана. Задача численно решена методом конечных разностей. Представлены и проанализированы результаты расчетов. |
format |
Article |
author |
Иванова, А.А. |
spellingShingle |
Иванова, А.А. 3-D математическая модель температурного поля непрерывного слитка Труды Института прикладной математики и механики |
author_facet |
Иванова, А.А. |
author_sort |
Иванова, А.А. |
title |
3-D математическая модель температурного поля непрерывного слитка |
title_short |
3-D математическая модель температурного поля непрерывного слитка |
title_full |
3-D математическая модель температурного поля непрерывного слитка |
title_fullStr |
3-D математическая модель температурного поля непрерывного слитка |
title_full_unstemmed |
3-D математическая модель температурного поля непрерывного слитка |
title_sort |
3-d математическая модель температурного поля непрерывного слитка |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/124053 |
citation_txt |
3-D математическая модель температурного поля непрерывного слитка / А.А. Иванова // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2011. — Т. 23. — С. 100-109. — Бібліогр.: 10 назв. — рос. |
series |
Труды Института прикладной математики и механики |
work_keys_str_mv |
AT ivanovaaa 3dmatematičeskaâmodelʹtemperaturnogopolânepreryvnogoslitka |
first_indexed |
2023-10-18T20:45:34Z |
last_indexed |
2023-10-18T20:45:34Z |
_version_ |
1796151035435155456 |