Energy estimates of bounded solutions of the Dirichlet problem for a class of nonlinear fourth-order elliptic equations
We consider a class of nonlinear elliptic fourth-order equations with the principal part satisfying a strengthened coercivity condition, absorption and a lower-order term. It is supposed that the lowerorder term of the equations admits the growth rates of derivatives of unknown function coinciding w...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
Назва видання: | Труды Института прикладной математики и механики |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124075 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Energy estimates of bounded solutions of the Dirichlet problem for a class of nonlinear fourth-order elliptic equations / M.V. Voitovich // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2012. — Т. 24. — С. 58-67. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We consider a class of nonlinear elliptic fourth-order equations with the principal part satisfying a strengthened coercivity condition, absorption and a lower-order term. It is supposed that the lowerorder term of the equations admits the growth rates of derivatives of unknown function coinciding with the exponents of the corresponding energy space. At the same time, we do not suppose that the lowerorder term satisfies a sign condition. Energy estimates of bounded generalized solutions of the Dirichlet problem for equations of the given class are established. |
---|