Подільність елементів зворотних послідовностей
Нехай un – n-е число Фiбоначчi, p – просте число. Тодi, якщо 5-квадратичний лишок у полi лишкiв за модулем p, то un(p-1) ≡ 0(modp), якщо 5-квадратичний нелишок, то un(p+1) ≡ 0(modp). Дається узагальнення цього результату на довiльнi зворотнi послiдовностi другого порядку...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
Назва видання: | Труды Института прикладной математики и механики |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124125 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Подільність елементів зворотних послідовностей / А.Г. Матюхіна, Л.Л. Оридорога // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2012. — Т. 25. — С. 161-165. — Бібліогр.: 7 назв. — укр. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-124125 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1241252017-09-21T03:03:04Z Подільність елементів зворотних послідовностей Матюхіна, А.Г. Оридорога, Л.Л. Нехай un – n-е число Фiбоначчi, p – просте число. Тодi, якщо 5-квадратичний лишок у полi лишкiв за модулем p, то un(p-1) ≡ 0(modp), якщо 5-квадратичний нелишок, то un(p+1) ≡ 0(modp). Дається узагальнення цього результату на довiльнi зворотнi послiдовностi другого порядку Пусть un – n-ое число Фибоначчи, p – простое число. Тогда, если 5-квадратичный вычет в поле вычетов по модулю p, то un(p-1) ≡ 0(modp), если 5-квадратичный невычет, то un(p+1) ≡ 0(modp). Дается обобщение этого результата на произвольные возвратные последовательности второго порядка. Let un be the n-th Fibonacci number and let p be a prime number. We prove that un(p-1) ≡ 0(modp) if 5 is a quadratic residue in Zp and that un(p+1) ≡ 0(modp) if 5 is the quadratic nonresidue in Zp. A generalization of this result is also obtained for arbitrary recursive sequences of second order. 2012 Article Подільність елементів зворотних послідовностей / А.Г. Матюхіна, Л.Л. Оридорога // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2012. — Т. 25. — С. 161-165. — Бібліогр.: 7 назв. — укр. 1683-4720 http://dspace.nbuv.gov.ua/handle/123456789/124125 531.38 uk Труды Института прикладной математики и механики Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Ukrainian |
description |
Нехай un – n-е число Фiбоначчi, p – просте число. Тодi, якщо 5-квадратичний лишок у полi лишкiв за модулем p, то un(p-1) ≡ 0(modp), якщо 5-квадратичний нелишок, то un(p+1) ≡ 0(modp). Дається узагальнення цього результату на довiльнi зворотнi послiдовностi другого порядку |
format |
Article |
author |
Матюхіна, А.Г. Оридорога, Л.Л. |
spellingShingle |
Матюхіна, А.Г. Оридорога, Л.Л. Подільність елементів зворотних послідовностей Труды Института прикладной математики и механики |
author_facet |
Матюхіна, А.Г. Оридорога, Л.Л. |
author_sort |
Матюхіна, А.Г. |
title |
Подільність елементів зворотних послідовностей |
title_short |
Подільність елементів зворотних послідовностей |
title_full |
Подільність елементів зворотних послідовностей |
title_fullStr |
Подільність елементів зворотних послідовностей |
title_full_unstemmed |
Подільність елементів зворотних послідовностей |
title_sort |
подільність елементів зворотних послідовностей |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/124125 |
citation_txt |
Подільність елементів зворотних послідовностей / А.Г. Матюхіна, Л.Л. Оридорога // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2012. — Т. 25. — С. 161-165. — Бібліогр.: 7 назв. — укр. |
series |
Труды Института прикладной математики и механики |
work_keys_str_mv |
AT matûhínaag podílʹnístʹelementívzvorotnihposlídovnostej AT oridorogall podílʹnístʹelementívzvorotnihposlídovnostej |
first_indexed |
2023-10-18T20:45:43Z |
last_indexed |
2023-10-18T20:45:43Z |
_version_ |
1796151041904869376 |