Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками

Вивчаються лебегiвська структура, тополого-метричнi i фрактальнi властивостi спектра (мiнiмального замкненого носiя) розподiлу випадкової пiдсуми заданого знакододатного ряду Люрота з незалежними доданками, поведiнка модуля її характеристичної функцiї на нескiнченностi. Повнiстю вивчено структуру, з...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Гончаренко, Я.В., Жихарєва, Ю.І, Працьовитий, М.В.
Мова:Ukrainian
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Труды Института прикладной математики и механики
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124154
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Властивості розподілу випадкової підсуми знакододатного ряду Люрота з незалежними доданками / Я.В. Гончаренко, Ю.І. Жихарєва, М.В. Працьовитий // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2013. — Т. 26. — С. 46-57. — Бібліогр.: 16 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Вивчаються лебегiвська структура, тополого-метричнi i фрактальнi властивостi спектра (мiнiмального замкненого носiя) розподiлу випадкової пiдсуми заданого знакододатного ряду Люрота з незалежними доданками, поведiнка модуля її характеристичної функцiї на нескiнченностi. Повнiстю вивчено структуру, знайдено необхiднi та достатнi умови аномальної фрактальностi, нульвимiрностi Лебега та канторовостi спектра. Доведено, що сингулярний розподiл пiдсуми є близьким до дискретного за поведiнкою характеристичної функцiї на нескiнченностi, якщо ряд не є перiодичним.