On the norms of the means of spherical Fourier sums
The spherical Fourier sums of a periodic functions in m variables, the strong means and the strong integral means of these sums for p ≥ 1 are considered. In contrast to the one-dimensional case treated by Hardy and Littlewood, for m ≥ 2 the norms of the corresponding operators in the space L∞ are no...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Труды Института прикладной математики и механики |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124232 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the norms of the means of spherical Fourier sums / O.I. Kuznetsova // Труды Института прикладной математики и механики. — Донецьк: ІПММ, 2015. — Т. 29. — С. 95-99. — Бібліогр.: 9 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-124232 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1242322017-09-23T03:03:58Z On the norms of the means of spherical Fourier sums Kuznetsova, O.I. The spherical Fourier sums of a periodic functions in m variables, the strong means and the strong integral means of these sums for p ≥ 1 are considered. In contrast to the one-dimensional case treated by Hardy and Littlewood, for m ≥ 2 the norms of the corresponding operators in the space L∞ are not bounded. The sharp order of growth of these norms is found. The upper and lower bounds differ by a factor depending only on the dimension m. A sufficient condition on the function ensuring the uniform strong p-summability of its Fourier series is given. Сферическая сумма Фурье периодической функции m переменных, ее сильные средние и сильные интегральные средние рассмотрены при p ≥ 1. В отличие от одномерного случая, рассмотренного Харди и Литвудом, при m ≥ 2 нормы соответствующих операторов в пространстве L∞ не ограничены. Найден точный порядок роста этих норм. Оценки сверху и снизу различаются на коэффициенты, зависящие лишь от размерности . Получено достаточное условие на функцию, обеспечивающее равномерную сильную суммируемость ее ряда Фурье. The present paper is the talk represented in International Conference «Harmonic analysis and approximation, VI», 12–18 September, 2015, Tsaghkadzor, Armenia. 2015 Article On the norms of the means of spherical Fourier sums / O.I. Kuznetsova // Труды Института прикладной математики и механики. — Донецьк: ІПММ, 2015. — Т. 29. — С. 95-99. — Бібліогр.: 9 назв. — англ. 1683-4720 http://dspace.nbuv.gov.ua/handle/123456789/124232 531.35 en Труды Института прикладной математики и механики Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The spherical Fourier sums of a periodic functions in m variables, the strong means and the strong integral means of these sums for p ≥ 1 are considered. In contrast to the one-dimensional case treated by Hardy and Littlewood, for m ≥ 2 the norms of the corresponding operators in the space L∞ are not bounded. The sharp order of growth of these norms is found. The upper and lower bounds differ by a factor depending only on the dimension m. A sufficient condition on the function ensuring the uniform strong p-summability of its Fourier series is given. |
format |
Article |
author |
Kuznetsova, O.I. |
spellingShingle |
Kuznetsova, O.I. On the norms of the means of spherical Fourier sums Труды Института прикладной математики и механики |
author_facet |
Kuznetsova, O.I. |
author_sort |
Kuznetsova, O.I. |
title |
On the norms of the means of spherical Fourier sums |
title_short |
On the norms of the means of spherical Fourier sums |
title_full |
On the norms of the means of spherical Fourier sums |
title_fullStr |
On the norms of the means of spherical Fourier sums |
title_full_unstemmed |
On the norms of the means of spherical Fourier sums |
title_sort |
on the norms of the means of spherical fourier sums |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/124232 |
citation_txt |
On the norms of the means of spherical Fourier sums / O.I. Kuznetsova // Труды Института прикладной математики и механики. — Донецьк: ІПММ, 2015. — Т. 29. — С. 95-99. — Бібліогр.: 9 назв. — англ. |
series |
Труды Института прикладной математики и механики |
work_keys_str_mv |
AT kuznetsovaoi onthenormsofthemeansofsphericalfouriersums |
first_indexed |
2023-10-18T20:45:58Z |
last_indexed |
2023-10-18T20:45:58Z |
_version_ |
1796151052314083328 |