О множествах, на которых функции с нулевыми интегралами по шарам допускают произвольное поведение
Доказано, что произвольная интегрируемая в квадрате функция, определенная на замкнутом множестве диаметра ≤ 2r отличном от шара радиуса r, продолжается до функции с нулевыми интегралами по шарам радиуса r, определенной на всем Rⁿ. Если внутренность множества содержит две точки, удаленные на расстоян...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
Назва видання: | Труды Института прикладной математики и механики |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124242 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О множествах, на которых функции с нулевыми интегралами по шарам допускают произвольное поведение / Д.А. Зарайский // Труды Института прикладной математики и механики. — Донецьк: ІПММ, 2016. — Т. 30. — С. 46-52. — Бібліогр.: 11 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Доказано, что произвольная интегрируемая в квадрате функция, определенная на замкнутом множестве диаметра ≤ 2r отличном от шара радиуса r, продолжается до функции с нулевыми интегралами по шарам радиуса r, определенной на всем Rⁿ. Если внутренность множества содержит две точки, удаленные на расстояние 2r, такое продолжение может не иметь места. Получен аналогичный результат для функций с нулевыми интегралами по сферам радиуса r. |
---|