C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds
We obtain the applications of approach [2, 5, 6] to the high order regularity of solutions to the parabolic Cauchy problem with globally non-Lipschitz coeffcients growing at the in nity of a noncompact manifold. In comparison to [2], where the semigroup properties were studied by application of nonl...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124261 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | C∞-regularity of non-Lipshitz heat semigroups on noncompact Riemannian manifolds / A.Val. Antoniouk // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 174-194. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We obtain the applications of approach [2, 5, 6] to the high order regularity of solutions to the parabolic Cauchy problem with globally non-Lipschitz coeffcients growing at the in nity of a noncompact manifold. In comparison to [2], where the semigroup properties were studied by application of nonlinear estimates on variations with use of local arguments of [11], i.e. for manifolds with the C² metric distance function, the developed below approach works for the general noncompact manifold with possible non-unique geodesics between distant points. |
---|