Asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts

A model of a strongly inhomogeneous medium with simultaneous perturbation of the rigidity and mass density is studied. The medium has strongly contrasting physical characteristics in two parts with the ratio of rigidities being proportional to a small parameter ". Additionally, the ratio of mas...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Babych, N., Golovaty, Yu.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124262
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts / N. Babych, Yu. Golovaty // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 194-217. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-124262
record_format dspace
spelling irk-123456789-1242622017-09-24T03:03:13Z Asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts Babych, N. Golovaty, Yu. A model of a strongly inhomogeneous medium with simultaneous perturbation of the rigidity and mass density is studied. The medium has strongly contrasting physical characteristics in two parts with the ratio of rigidities being proportional to a small parameter ". Additionally, the ratio of mass densities is of order " ε⁻¹. We investigate the asymptotic behaviour of the spectrum and eigensubspaces as ε → 0. Complete asymptotic expansions of eigenvalues and eigenfunctions are constructed and justified. We show that the limit operator is nonself-adjoint in general and possesses two-dimensional Jordan cells in spite of the singular perturbed problem is associated with a self-adjoint operator in appropriated Hilbert space Lε. This may happen if the metric in which the problem is self-adjoint depends on small parameter " in a singular way. In particular, it leads to a loss of completeness for the eigenfunction collection. We describe how root spaces of the limit operator approximate eigenspaces of the perturbed operator. 2008 Article Asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts / N. Babych, Yu. Golovaty // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 194-217. — Бібліогр.: 22 назв. — англ. 0236-0497 MSC (2000): 35P20; 74H45; 35J25 http://dspace.nbuv.gov.ua/handle/123456789/124262 en Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A model of a strongly inhomogeneous medium with simultaneous perturbation of the rigidity and mass density is studied. The medium has strongly contrasting physical characteristics in two parts with the ratio of rigidities being proportional to a small parameter ". Additionally, the ratio of mass densities is of order " ε⁻¹. We investigate the asymptotic behaviour of the spectrum and eigensubspaces as ε → 0. Complete asymptotic expansions of eigenvalues and eigenfunctions are constructed and justified. We show that the limit operator is nonself-adjoint in general and possesses two-dimensional Jordan cells in spite of the singular perturbed problem is associated with a self-adjoint operator in appropriated Hilbert space Lε. This may happen if the metric in which the problem is self-adjoint depends on small parameter " in a singular way. In particular, it leads to a loss of completeness for the eigenfunction collection. We describe how root spaces of the limit operator approximate eigenspaces of the perturbed operator.
format Article
author Babych, N.
Golovaty, Yu.
spellingShingle Babych, N.
Golovaty, Yu.
Asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts
author_facet Babych, N.
Golovaty, Yu.
author_sort Babych, N.
title Asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts
title_short Asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts
title_full Asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts
title_fullStr Asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts
title_full_unstemmed Asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts
title_sort asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts
publisher Інститут прикладної математики і механіки НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/124262
citation_txt Asymptotic analysis of a vibrating system containing stiff-heavy and flexible-light parts / N. Babych, Yu. Golovaty // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 194-217. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT babychn asymptoticanalysisofavibratingsystemcontainingstiffheavyandflexiblelightparts
AT golovatyyu asymptoticanalysisofavibratingsystemcontainingstiffheavyandflexiblelightparts
first_indexed 2023-10-18T20:46:02Z
last_indexed 2023-10-18T20:46:02Z
_version_ 1796151055482880000