Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation

In this paper we establish su cient conditions on the data of the problem which guarantee a convergence of its solution to a limit solution. The domains where we consider the problem has a ne-grained structure.We use S.I.Pohozhaev's method for the proof of the unique solvability in entire and...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Sidenko, N.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124265
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equatio / N.R. Sidenko // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 245-255. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-124265
record_format dspace
spelling irk-123456789-1242652017-09-24T03:03:16Z Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation Sidenko, N.R. In this paper we establish su cient conditions on the data of the problem which guarantee a convergence of its solution to a limit solution. The domains where we consider the problem has a ne-grained structure.We use S.I.Pohozhaev's method for the proof of the unique solvability in entire and the D.Cioranescu-F.Murat hypothesis for the description of the domain milling. 2008 Article Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equatio / N.R. Sidenko // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 245-255. — Бібліогр.: 10 назв. — англ. 0236-0497 MSC (2000): 35L70, 35B27 http://dspace.nbuv.gov.ua/handle/123456789/124265 en Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we establish su cient conditions on the data of the problem which guarantee a convergence of its solution to a limit solution. The domains where we consider the problem has a ne-grained structure.We use S.I.Pohozhaev's method for the proof of the unique solvability in entire and the D.Cioranescu-F.Murat hypothesis for the description of the domain milling.
format Article
author Sidenko, N.R.
spellingShingle Sidenko, N.R.
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation
author_facet Sidenko, N.R.
author_sort Sidenko, N.R.
title Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation
title_short Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation
title_full Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation
title_fullStr Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation
title_full_unstemmed Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation
title_sort averaging of the dirichlet problem for the spectral hyperbolic quasilinear equation
publisher Інститут прикладної математики і механіки НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/124265
citation_txt Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equatio / N.R. Sidenko // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 245-255. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT sidenkonr averagingofthedirichletproblemforthespectralhyperbolicquasilinearequation
first_indexed 2023-10-18T20:46:03Z
last_indexed 2023-10-18T20:46:03Z
_version_ 1796151055798501376