Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation
In this paper we establish su cient conditions on the data of the problem which guarantee a convergence of its solution to a limit solution. The domains where we consider the problem has a ne-grained structure.We use S.I.Pohozhaev's method for the proof of the unique solvability in entire and...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124265 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equatio / N.R. Sidenko // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 245-255. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-124265 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1242652017-09-24T03:03:16Z Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation Sidenko, N.R. In this paper we establish su cient conditions on the data of the problem which guarantee a convergence of its solution to a limit solution. The domains where we consider the problem has a ne-grained structure.We use S.I.Pohozhaev's method for the proof of the unique solvability in entire and the D.Cioranescu-F.Murat hypothesis for the description of the domain milling. 2008 Article Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equatio / N.R. Sidenko // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 245-255. — Бібліогр.: 10 назв. — англ. 0236-0497 MSC (2000): 35L70, 35B27 http://dspace.nbuv.gov.ua/handle/123456789/124265 en Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we establish su cient conditions on the data of the problem which guarantee a convergence of its solution to a limit solution. The domains where we consider the problem has a ne-grained structure.We use S.I.Pohozhaev's method for the proof of the unique solvability in entire and the D.Cioranescu-F.Murat hypothesis for the description of the domain milling. |
format |
Article |
author |
Sidenko, N.R. |
spellingShingle |
Sidenko, N.R. Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation |
author_facet |
Sidenko, N.R. |
author_sort |
Sidenko, N.R. |
title |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation |
title_short |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation |
title_full |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation |
title_fullStr |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation |
title_full_unstemmed |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equation |
title_sort |
averaging of the dirichlet problem for the spectral hyperbolic quasilinear equation |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/124265 |
citation_txt |
Averaging of the Dirichlet problem for the spectral hyperbolic quasilinear equatio / N.R. Sidenko // Нелинейные граничные задачи. — 2008. — Т. 18. — С. 245-255. — Бібліогр.: 10 назв. — англ. |
work_keys_str_mv |
AT sidenkonr averagingofthedirichletproblemforthespectralhyperbolicquasilinearequation |
first_indexed |
2023-10-18T20:46:03Z |
last_indexed |
2023-10-18T20:46:03Z |
_version_ |
1796151055798501376 |