Малые движения и нормальные колебания баротропного газа в ограниченной области
Рассматриваются эволюционная и спектральная задачи, порождённые малыми движениями сжимаемого баротропного вязкого и невязкого газа в ограниченной области. Доказано, что начально–краевая задача о малых движениях идеального баротропного газа в замкнутом неподвижном сосуде имеет единственное сильное ре...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2009
|
Назва видання: | Нелинейные граничные задачи |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124277 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Малые движения и нормальные колебания баротропного газа в ограниченной области / Е.А. Пронина // Нелинейные граничные задачи: сб. науч. тр. — 2009. — Т. 19. — С. 125-133. — Бібліогр.: 4 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Рассматриваются эволюционная и спектральная задачи, порождённые малыми движениями сжимаемого баротропного вязкого и невязкого газа в ограниченной области. Доказано, что начально–краевая задача о малых движениях идеального баротропного газа в замкнутом неподвижном сосуде имеет единственное сильное решение на любом отрезке времени. В соответствующей спектральной задаче установлено, что ее спектр состоит из бесконечнократного нулевого собственного значения (очевидное решение) и двух ветвей конечнократных собственных значений, локализованных в окрестности мнимой оси. Этим ветвям отвечает совокупность корневых элементов, образующая базис Абеля–Лидского в подпространстве, ортогональном к подпространству очевидных решений. Аналогичные вопросы рассмотрены и для случая вязкого газа. |
---|