Power geometry in nonlinear partial differential equations
Power Geometry (PG) is a new calculus developing the differential calculus and aimed at nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms of original coordinates. Then many relations nonlinear in the original coordinates become linear. The algorithms of PG a...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
Назва видання: | Український математичний вісник |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124295 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Power geometry in nonlinear partial differential equations / A.D. Bruno // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 32-45. — Бібліогр.: 4 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-124295 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1242952017-09-24T03:02:50Z Power geometry in nonlinear partial differential equations Bruno, A.D. Power Geometry (PG) is a new calculus developing the differential calculus and aimed at nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms of original coordinates. Then many relations nonlinear in the original coordinates become linear. The algorithms of PG are based on these linear relations. They allow to simplify equations, to resolve their singularities (including singular perturbations), to isolate their first approximations, and to find asymptotic forms and asymptotic expansions of their solutions. In particular, they give simple methods to identify the equations and systems as quasihomogeneous, and then to introduce for them self-similar coordinates. As an application, we consider the stationary spatial axially symmetric flow of the viscous compressible heat conducting gas around a semi-infinite needle. Other application: finding blow-up solutions. 2008 Article Power geometry in nonlinear partial differential equations / A.D. Bruno // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 32-45. — Бібліогр.: 4 назв. — англ. 1810-3200 2000 MSC. 200134, 200135 http://dspace.nbuv.gov.ua/handle/123456789/124295 en Український математичний вісник Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Power Geometry (PG) is a new calculus developing the differential calculus and aimed at nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms of original coordinates. Then many relations nonlinear in the original coordinates become linear. The algorithms of PG are based on these linear relations. They allow to simplify equations, to resolve their singularities (including singular perturbations), to isolate their first approximations, and to find asymptotic forms and asymptotic expansions of their solutions. In particular, they give simple methods to identify the equations and systems as quasihomogeneous, and then to introduce for them self-similar coordinates. As an application, we consider the stationary spatial axially symmetric flow of the viscous compressible heat conducting gas around a semi-infinite needle. Other application: finding blow-up solutions. |
format |
Article |
author |
Bruno, A.D. |
spellingShingle |
Bruno, A.D. Power geometry in nonlinear partial differential equations Український математичний вісник |
author_facet |
Bruno, A.D. |
author_sort |
Bruno, A.D. |
title |
Power geometry in nonlinear partial differential equations |
title_short |
Power geometry in nonlinear partial differential equations |
title_full |
Power geometry in nonlinear partial differential equations |
title_fullStr |
Power geometry in nonlinear partial differential equations |
title_full_unstemmed |
Power geometry in nonlinear partial differential equations |
title_sort |
power geometry in nonlinear partial differential equations |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/124295 |
citation_txt |
Power geometry in nonlinear partial differential equations / A.D. Bruno // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 32-45. — Бібліогр.: 4 назв. — англ. |
series |
Український математичний вісник |
work_keys_str_mv |
AT brunoad powergeometryinnonlinearpartialdifferentialequations |
first_indexed |
2023-10-18T20:46:06Z |
last_indexed |
2023-10-18T20:46:06Z |
_version_ |
1796151058229100544 |