Power geometry in nonlinear partial differential equations

Power Geometry (PG) is a new calculus developing the differential calculus and aimed at nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms of original coordinates. Then many relations nonlinear in the original coordinates become linear. The algorithms of PG a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Bruno, A.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2008
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124295
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Power geometry in nonlinear partial differential equations / A.D. Bruno // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 32-45. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-124295
record_format dspace
spelling irk-123456789-1242952017-09-24T03:02:50Z Power geometry in nonlinear partial differential equations Bruno, A.D. Power Geometry (PG) is a new calculus developing the differential calculus and aimed at nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms of original coordinates. Then many relations nonlinear in the original coordinates become linear. The algorithms of PG are based on these linear relations. They allow to simplify equations, to resolve their singularities (including singular perturbations), to isolate their first approximations, and to find asymptotic forms and asymptotic expansions of their solutions. In particular, they give simple methods to identify the equations and systems as quasihomogeneous, and then to introduce for them self-similar coordinates. As an application, we consider the stationary spatial axially symmetric flow of the viscous compressible heat conducting gas around a semi-infinite needle. Other application: finding blow-up solutions. 2008 Article Power geometry in nonlinear partial differential equations / A.D. Bruno // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 32-45. — Бібліогр.: 4 назв. — англ. 1810-3200 2000 MSC. 200134, 200135 http://dspace.nbuv.gov.ua/handle/123456789/124295 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Power Geometry (PG) is a new calculus developing the differential calculus and aimed at nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms of original coordinates. Then many relations nonlinear in the original coordinates become linear. The algorithms of PG are based on these linear relations. They allow to simplify equations, to resolve their singularities (including singular perturbations), to isolate their first approximations, and to find asymptotic forms and asymptotic expansions of their solutions. In particular, they give simple methods to identify the equations and systems as quasihomogeneous, and then to introduce for them self-similar coordinates. As an application, we consider the stationary spatial axially symmetric flow of the viscous compressible heat conducting gas around a semi-infinite needle. Other application: finding blow-up solutions.
format Article
author Bruno, A.D.
spellingShingle Bruno, A.D.
Power geometry in nonlinear partial differential equations
Український математичний вісник
author_facet Bruno, A.D.
author_sort Bruno, A.D.
title Power geometry in nonlinear partial differential equations
title_short Power geometry in nonlinear partial differential equations
title_full Power geometry in nonlinear partial differential equations
title_fullStr Power geometry in nonlinear partial differential equations
title_full_unstemmed Power geometry in nonlinear partial differential equations
title_sort power geometry in nonlinear partial differential equations
publisher Інститут прикладної математики і механіки НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/124295
citation_txt Power geometry in nonlinear partial differential equations / A.D. Bruno // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 32-45. — Бібліогр.: 4 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT brunoad powergeometryinnonlinearpartialdifferentialequations
first_indexed 2023-10-18T20:46:06Z
last_indexed 2023-10-18T20:46:06Z
_version_ 1796151058229100544