К теории нижних Q-гомеоморфизмов
В статье исследуются нижние Q-гомеоморфизмы, которые естественным образом обобщают понятие квазиконформного отображения в направлении геометрического определения по Вяйсяля–Герингу. В статье найдены условия на мажоранту Q(x) для устранимости изолированных особенностей, а также для непрерывного и гом...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2008
|
Назва видання: | Український математичний вісник |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124334 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | К теории нижних Q-гомеоморфизмов / Д.А. Ковтонюк, В.И. Рязанов // Український математичний вісник. — 2008. — Т. 5, № 2. — С. 159-184. — Бібліогр.: 40 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-124334 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1243342017-09-24T03:02:59Z К теории нижних Q-гомеоморфизмов Ковтонюк, Д.А. Рязанов, В.И. В статье исследуются нижние Q-гомеоморфизмы, которые естественным образом обобщают понятие квазиконформного отображения в направлении геометрического определения по Вяйсяля–Герингу. В статье найдены условия на мажоранту Q(x) для устранимости изолированных особенностей, а также для непрерывного и гомеоморфного продолжения отображений данного класса на регулярные границы. В частности, в работе доказаны далеко идущие обобщения известной теоремы Геринга–Мартио (1985) о гомеоморфном продолжении на границу квазиконформных отображений между областями квазиэкстремальной длины. Указанный класс областей включает в себя такие широкие классы областей как равномерные, выпуклые, гладкие и т.д. Показано, что области с так называемыми слабо плоскими границами являются локально связными в граничных точках. На этой основе получается распространение всех результатов и на этот еще более широкий класс границ. Области со слабо плоскими границами - наиболее широкие из известных классов областей, граничное соответствие между которыми при конформных и квазиконформных отображениях осуществляется поточечно, а не по простым концам. Развитая теория применима также к отображениям с конечным искажением площади и, в частности, к конечно билипшицевым отображениям, которые являются естественным обобщением хорошо известных классов изометрических и квазиизометрических отображений. 2008 Article К теории нижних Q-гомеоморфизмов / Д.А. Ковтонюк, В.И. Рязанов // Український математичний вісник. — 2008. — Т. 5, № 2. — С. 159-184. — Бібліогр.: 40 назв. — рос. 1810-3200 2000 MSC. 30C65, 30C75. http://dspace.nbuv.gov.ua/handle/123456789/124334 ru Український математичний вісник Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
description |
В статье исследуются нижние Q-гомеоморфизмы, которые естественным образом обобщают понятие квазиконформного отображения в направлении геометрического определения по Вяйсяля–Герингу. В статье найдены условия на мажоранту Q(x) для устранимости изолированных особенностей, а также для непрерывного и гомеоморфного продолжения отображений данного класса на регулярные границы. В частности, в работе доказаны далеко идущие обобщения известной теоремы Геринга–Мартио (1985) о гомеоморфном продолжении на границу квазиконформных отображений между областями квазиэкстремальной длины. Указанный класс областей включает в себя такие широкие классы областей как равномерные, выпуклые, гладкие и т.д. Показано, что области с так называемыми слабо плоскими границами являются локально связными в граничных точках. На этой основе получается распространение всех результатов и на этот еще более широкий класс границ. Области со слабо плоскими границами - наиболее широкие из известных классов областей, граничное соответствие между которыми при конформных и квазиконформных отображениях осуществляется поточечно, а не по простым концам. Развитая теория применима также к отображениям с конечным искажением площади и, в частности, к конечно билипшицевым отображениям, которые являются естественным обобщением хорошо известных классов изометрических и квазиизометрических отображений. |
format |
Article |
author |
Ковтонюк, Д.А. Рязанов, В.И. |
spellingShingle |
Ковтонюк, Д.А. Рязанов, В.И. К теории нижних Q-гомеоморфизмов Український математичний вісник |
author_facet |
Ковтонюк, Д.А. Рязанов, В.И. |
author_sort |
Ковтонюк, Д.А. |
title |
К теории нижних Q-гомеоморфизмов |
title_short |
К теории нижних Q-гомеоморфизмов |
title_full |
К теории нижних Q-гомеоморфизмов |
title_fullStr |
К теории нижних Q-гомеоморфизмов |
title_full_unstemmed |
К теории нижних Q-гомеоморфизмов |
title_sort |
к теории нижних q-гомеоморфизмов |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/124334 |
citation_txt |
К теории нижних Q-гомеоморфизмов / Д.А. Ковтонюк, В.И. Рязанов // Український математичний вісник. — 2008. — Т. 5, № 2. — С. 159-184. — Бібліогр.: 40 назв. — рос. |
series |
Український математичний вісник |
work_keys_str_mv |
AT kovtonûkda kteoriinižnihqgomeomorfizmov AT râzanovvi kteoriinižnihqgomeomorfizmov |
first_indexed |
2023-10-18T20:46:12Z |
last_indexed |
2023-10-18T20:46:12Z |
_version_ |
1796151062379364352 |