Fundamental solutions of boundary problems and resolvents of differential operators
The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operat...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2009
|
Назва видання: | Український математичний вісник |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124370 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Fundamental solutions of boundary problems and resolvents of differential operators / V. Mogilevskii // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 492-530. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operators in a separable Hilbert space H. Our approach is based on the concept of a decomposing D-boundary triplet, which enables to describe various properties of (regular and singular) differential operators immediately in terms of boundary conditions. |
---|