2025-02-23T03:48:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124370%22&qt=morelikethis&rows=5
2025-02-23T03:48:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124370%22&qt=morelikethis&rows=5
2025-02-23T03:48:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:48:57-05:00 DEBUG: Deserialized SOLR response
Fundamental solutions of boundary problems and resolvents of differential operators
The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operat...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2009
|
Series: | Український математичний вісник |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/124370 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operators in a separable Hilbert space H. Our approach is based on the concept of a decomposing D-boundary triplet, which enables to describe various properties of (regular and singular) differential operators immediately in terms of boundary conditions. |
---|