Fundamental solutions of boundary problems and resolvents of differential operators
The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operat...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2009
|
Назва видання: | Український математичний вісник |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124370 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Fundamental solutions of boundary problems and resolvents of differential operators / V. Mogilevskii // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 492-530. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-124370 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1243702017-09-25T03:02:48Z Fundamental solutions of boundary problems and resolvents of differential operators Mogilevskii, V. The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operators in a separable Hilbert space H. Our approach is based on the concept of a decomposing D-boundary triplet, which enables to describe various properties of (regular and singular) differential operators immediately in terms of boundary conditions. 2009 Article Fundamental solutions of boundary problems and resolvents of differential operators / V. Mogilevskii // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 492-530. — Бібліогр.: 20 назв. — англ. 1810-3200 2000 MSC. 34B05, 34B27, 34B40, 47E05. http://dspace.nbuv.gov.ua/handle/123456789/124370 en Український математичний вісник Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operators in a separable Hilbert space H. Our approach is based on the concept of a decomposing D-boundary triplet, which enables to describe various properties of (regular and singular) differential operators immediately in terms of boundary conditions. |
format |
Article |
author |
Mogilevskii, V. |
spellingShingle |
Mogilevskii, V. Fundamental solutions of boundary problems and resolvents of differential operators Український математичний вісник |
author_facet |
Mogilevskii, V. |
author_sort |
Mogilevskii, V. |
title |
Fundamental solutions of boundary problems and resolvents of differential operators |
title_short |
Fundamental solutions of boundary problems and resolvents of differential operators |
title_full |
Fundamental solutions of boundary problems and resolvents of differential operators |
title_fullStr |
Fundamental solutions of boundary problems and resolvents of differential operators |
title_full_unstemmed |
Fundamental solutions of boundary problems and resolvents of differential operators |
title_sort |
fundamental solutions of boundary problems and resolvents of differential operators |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/124370 |
citation_txt |
Fundamental solutions of boundary problems and resolvents of differential operators / V. Mogilevskii // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 492-530. — Бібліогр.: 20 назв. — англ. |
series |
Український математичний вісник |
work_keys_str_mv |
AT mogilevskiiv fundamentalsolutionsofboundaryproblemsandresolventsofdifferentialoperators |
first_indexed |
2023-10-18T20:46:17Z |
last_indexed |
2023-10-18T20:46:17Z |
_version_ |
1796151065861685248 |