2025-02-23T03:42:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124370%22&qt=morelikethis&rows=5
2025-02-23T03:42:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124370%22&qt=morelikethis&rows=5
2025-02-23T03:42:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:42:01-05:00 DEBUG: Deserialized SOLR response

Fundamental solutions of boundary problems and resolvents of differential operators

The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operat...

Full description

Saved in:
Bibliographic Details
Main Author: Mogilevskii, V.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2009
Series:Український математичний вісник
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/124370
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-124370
record_format dspace
spelling irk-123456789-1243702017-09-25T03:02:48Z Fundamental solutions of boundary problems and resolvents of differential operators Mogilevskii, V. The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operators in a separable Hilbert space H. Our approach is based on the concept of a decomposing D-boundary triplet, which enables to describe various properties of (regular and singular) differential operators immediately in terms of boundary conditions. 2009 Article Fundamental solutions of boundary problems and resolvents of differential operators / V. Mogilevskii // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 492-530. — Бібліогр.: 20 назв. — англ. 1810-3200 2000 MSC. 34B05, 34B27, 34B40, 47E05. http://dspace.nbuv.gov.ua/handle/123456789/124370 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order. The coefficients of this expression are operator valued functions defined on the interval [0, bi (b ≤ ∞) with values in the set of all linear bounded operators in a separable Hilbert space H. Our approach is based on the concept of a decomposing D-boundary triplet, which enables to describe various properties of (regular and singular) differential operators immediately in terms of boundary conditions.
format Article
author Mogilevskii, V.
spellingShingle Mogilevskii, V.
Fundamental solutions of boundary problems and resolvents of differential operators
Український математичний вісник
author_facet Mogilevskii, V.
author_sort Mogilevskii, V.
title Fundamental solutions of boundary problems and resolvents of differential operators
title_short Fundamental solutions of boundary problems and resolvents of differential operators
title_full Fundamental solutions of boundary problems and resolvents of differential operators
title_fullStr Fundamental solutions of boundary problems and resolvents of differential operators
title_full_unstemmed Fundamental solutions of boundary problems and resolvents of differential operators
title_sort fundamental solutions of boundary problems and resolvents of differential operators
publisher Інститут прикладної математики і механіки НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/124370
citation_txt Fundamental solutions of boundary problems and resolvents of differential operators / V. Mogilevskii // Український математичний вісник. — 2009. — Т. 6, № 4. — С. 492-530. — Бібліогр.: 20 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT mogilevskiiv fundamentalsolutionsofboundaryproblemsandresolventsofdifferentialoperators
first_indexed 2023-10-18T20:46:17Z
last_indexed 2023-10-18T20:46:17Z
_version_ 1796151065861685248