Balleans of topological groups

A subset S of a topological group G is called bounded if, for every neighborhood U of the identity of G, there exists a finite subset F such that S ⊆ FU, S ⊆ UF. The family of all bounded subsets of G determines two structures on G, namely the left and right balleans Bl(G) and Br(G) , which are coun...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Hernández, S., Protasov, I.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124412
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Balleans of topological groups / S. Hernández, I. V. Protasov // Український математичний вісник. — 2011. — Т. 8, № 1. — С. 87-100. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A subset S of a topological group G is called bounded if, for every neighborhood U of the identity of G, there exists a finite subset F such that S ⊆ FU, S ⊆ UF. The family of all bounded subsets of G determines two structures on G, namely the left and right balleans Bl(G) and Br(G) , which are counterparts of the left and right uniformities of G. We study the relationships between the uniform and ballean structures on G, describe all topological groups admitting a metric compatible both with uniform and ballean structures, and construct a group analogue of Higson’s compactification of a proper metric space.