To the spectral theory of the Bessel operator on finite interval and half-line
The minimal and maximal operators generated by the Bessel differential expression on the finite interval and a half-line are studied. All non-negative self-adjoint extensions of the minimal operator are described. Also we obtain a description of the domain of the Friedrichs extension of the minimal...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Український математичний вісник |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124494 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | To the spectral theory of the Bessel operator on finite interval and half-line / A.Yu. Ananieva, V.S. Budyika // Український математичний вісник. — 2015. — Т. 12, № 2. — С. 160-189. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The minimal and maximal operators generated by the Bessel differential expression on the finite interval and a half-line are studied. All non-negative self-adjoint extensions of the minimal operator are described. Also we obtain a description of the domain of the Friedrichs extension of the minimal operator in the framework of extension theory of symmetric operators by applying the technique of boundary triplets and the corresponding Weyl functions, and by using the quadratic form method. |
---|