Рациональные аппроксимации и сильная матричная проблема моментов
В этой работе рассматривается сильная усеченная матричная проблема моментов Гамбургера, что означает: индексы k меняются в диапазоне − 2μ− ≤ k ≤ 2μ+, а моменты Sk являются самосопряженными матрицами. Мы находим условия разрешимости и единственности решения этой задачи и даем описание всех решений в...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Український математичний вісник |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124518 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Рациональные аппроксимации и сильная матричная проблема моментов / К.К. Симонов // Український математичний вісник. — 2007. — Т. 4, № 2. — С. 235-264. — Бібліогр.: 27 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | В этой работе рассматривается сильная усеченная матричная проблема моментов Гамбургера, что означает: индексы k меняются в диапазоне − 2μ− ≤ k ≤ 2μ+, а моменты Sk являются самосопряженными матрицами. Мы находим условия разрешимости и единственности решения этой задачи и даем описание всех решений в терминах самосопряженных расширений некоторого модельного симметрического оператора. Кроме того, мы строим последовательность двухточечных диагональных аппроксимаций Паде, соответствующих сильной проблеме моментов, и исследуем сходимость этой последовательности. Наконец, мы факторизуем резольвентную матрицу сильной усеченной проблемы моментов. |
---|