Operator pencils of the second order and linear fractional relations

The notions of a pencil of the second order and a linear fractional relation (LFR) are defined in spaces of linear bounded operators acting between Banach spaces. It is shown that these notions are closely connected with various theoretical and applied problems and have diverse applications. A numbe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Khatskevich, V., Karelin, I., Zelenko, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2006
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124564
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Operator pencils of the second order and linear fractional relations / V. Khatskevich, I. Karelin, L. Zelenko // Український математичний вісник. — 2006. — Т. 3, № 4. — С. 467-503. — Бібліогр.: 87 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-124564
record_format dspace
spelling irk-123456789-1245642017-09-30T03:03:42Z Operator pencils of the second order and linear fractional relations Khatskevich, V. Karelin, I. Zelenko, L. The notions of a pencil of the second order and a linear fractional relation (LFR) are defined in spaces of linear bounded operators acting between Banach spaces. It is shown that these notions are closely connected with various theoretical and applied problems and have diverse applications. A number of the open problems, both for pencils and LFR, are posed in this paper. Some of the above problems are solved and applied to the study of dichotomic behavior of dynamical systems. 2006 Article Operator pencils of the second order and linear fractional relations / V. Khatskevich, I. Karelin, L. Zelenko // Український математичний вісник. — 2006. — Т. 3, № 4. — С. 467-503. — Бібліогр.: 87 назв. — англ. 1810-3200 2000 MSC. 47B50, 32H99, 93C15, 37D99. http://dspace.nbuv.gov.ua/handle/123456789/124564 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The notions of a pencil of the second order and a linear fractional relation (LFR) are defined in spaces of linear bounded operators acting between Banach spaces. It is shown that these notions are closely connected with various theoretical and applied problems and have diverse applications. A number of the open problems, both for pencils and LFR, are posed in this paper. Some of the above problems are solved and applied to the study of dichotomic behavior of dynamical systems.
format Article
author Khatskevich, V.
Karelin, I.
Zelenko, L.
spellingShingle Khatskevich, V.
Karelin, I.
Zelenko, L.
Operator pencils of the second order and linear fractional relations
Український математичний вісник
author_facet Khatskevich, V.
Karelin, I.
Zelenko, L.
author_sort Khatskevich, V.
title Operator pencils of the second order and linear fractional relations
title_short Operator pencils of the second order and linear fractional relations
title_full Operator pencils of the second order and linear fractional relations
title_fullStr Operator pencils of the second order and linear fractional relations
title_full_unstemmed Operator pencils of the second order and linear fractional relations
title_sort operator pencils of the second order and linear fractional relations
publisher Інститут прикладної математики і механіки НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/124564
citation_txt Operator pencils of the second order and linear fractional relations / V. Khatskevich, I. Karelin, L. Zelenko // Український математичний вісник. — 2006. — Т. 3, № 4. — С. 467-503. — Бібліогр.: 87 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT khatskevichv operatorpencilsofthesecondorderandlinearfractionalrelations
AT karelini operatorpencilsofthesecondorderandlinearfractionalrelations
AT zelenkol operatorpencilsofthesecondorderandlinearfractionalrelations
first_indexed 2023-10-18T20:46:40Z
last_indexed 2023-10-18T20:46:40Z
_version_ 1796151083100274688