Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids

We consider Maxwell’s equations in domains that are complements to connected, grid-like sets formed by intersecting thin wires. We impose the boundary conditions that correspond to perfectly conducting wires, and study the asymptotic behavior of solutions as grids are becoming thinner and denser. We...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Khruslov, E.Ya.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124586
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids / E.Ya. Khruslov // Український математичний вісник. — 2005. — Т. 2, № 1. — С. 109-142. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-124586
record_format dspace
spelling irk-123456789-1245862017-09-30T03:03:45Z Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids Khruslov, E.Ya. We consider Maxwell’s equations in domains that are complements to connected, grid-like sets formed by intersecting thin wires. We impose the boundary conditions that correspond to perfectly conducting wires, and study the asymptotic behavior of solutions as grids are becoming thinner and denser. We derive a homogenized system of equations describing the leading term of the asymptotics. Assuming that a Korn-type inequality holds, we validate the homogenization procedure. 2005 Article Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids / E.Ya. Khruslov // Український математичний вісник. — 2005. — Т. 2, № 1. — С. 109-142. — Бібліогр.: 14 назв. — англ. 1810-3200 2000 MSC. 35B27, 78M40 http://dspace.nbuv.gov.ua/handle/123456789/124586 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider Maxwell’s equations in domains that are complements to connected, grid-like sets formed by intersecting thin wires. We impose the boundary conditions that correspond to perfectly conducting wires, and study the asymptotic behavior of solutions as grids are becoming thinner and denser. We derive a homogenized system of equations describing the leading term of the asymptotics. Assuming that a Korn-type inequality holds, we validate the homogenization procedure.
format Article
author Khruslov, E.Ya.
spellingShingle Khruslov, E.Ya.
Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
Український математичний вісник
author_facet Khruslov, E.Ya.
author_sort Khruslov, E.Ya.
title Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
title_short Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
title_full Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
title_fullStr Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
title_full_unstemmed Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids
title_sort homogenization of maxwell's equations in domains with dense perfectly conducting grids
publisher Інститут прикладної математики і механіки НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/124586
citation_txt Homogenization of Maxwell's Equations in Domains with Dense Perfectly Conducting Grids / E.Ya. Khruslov // Український математичний вісник. — 2005. — Т. 2, № 1. — С. 109-142. — Бібліогр.: 14 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT khrusloveya homogenizationofmaxwellsequationsindomainswithdenseperfectlyconductinggrids
first_indexed 2023-10-18T20:46:42Z
last_indexed 2023-10-18T20:46:42Z
_version_ 1796151084370100224