2025-02-23T22:27:50-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124620%22&qt=morelikethis&rows=5
2025-02-23T22:27:50-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124620%22&qt=morelikethis&rows=5
2025-02-23T22:27:50-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T22:27:50-05:00 DEBUG: Deserialized SOLR response
n-distributivity and n-modularity in lattices
In this paper we consider some forbidden sublattices for n-distributive, but non-modular lattices. We define the new notion of n-modularity (weaker than n-distributivity). We also consider some forbidden sublattice for an n-modular lattice. We prove that n-modularity implies (n + 1)-modularity. The...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2004
|
Series: | Український математичний вісник |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/124620 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we consider some forbidden sublattices for n-distributive, but non-modular lattices. We define the new notion of n-modularity (weaker than n-distributivity). We also consider some forbidden sublattice for an n-modular lattice. We prove that n-modularity implies (n + 1)-modularity. The counter-examples for the inverse implication are shown. |
---|