2025-02-22T21:23:07-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124621%22&qt=morelikethis&rows=5
2025-02-22T21:23:07-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124621%22&qt=morelikethis&rows=5
2025-02-22T21:23:07-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T21:23:07-05:00 DEBUG: Deserialized SOLR response

Twisted K-theory

Twisted complex K-theory can be defined for a space X equipped with a bundle of complex projective spaces, or, equivalently, with a bundle of C*-algebras. Up to equivalence, the twisting corresponds to an element of H³(X; Z). We give a systematic account of the definition and basic properties of the...

Full description

Saved in:
Bibliographic Details
Main Authors: Atiyah, M., Segal, G.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2004
Series:Український математичний вісник
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/124621
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Twisted complex K-theory can be defined for a space X equipped with a bundle of complex projective spaces, or, equivalently, with a bundle of C*-algebras. Up to equivalence, the twisting corresponds to an element of H³(X; Z). We give a systematic account of the definition and basic properties of the twisted theory, emphasizing some points where it behaves differently from ordinary K-theory. (We omit, however, its relations to classical cohomology, which we shall treat in a sequel.) We develop an equivariant version of the theory for the action of a compact Lie group, proving that then the twistings are classified by the equivariant cohomology group H³G (X; Z). We also consider some basic examples of twisted K-theory classes, related to those appearing in the recent work of Freed-Hopkins-Teleman.