2025-02-22T16:55:49-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124626%22&qt=morelikethis&rows=5
2025-02-22T16:55:49-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124626%22&qt=morelikethis&rows=5
2025-02-22T16:55:49-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T16:55:49-05:00 DEBUG: Deserialized SOLR response
Nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations
We consider flows, generated by nonlinear differential equations on manifold that could also contain random terms and correspond to the second order parabolic equations. We demonstrate that the rigorous statement of the regularity problems for differential flows on noncompact manifolds requires the...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2004
|
Series: | Український математичний вісник |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/124626 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-124626 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1246262017-10-01T03:03:15Z Nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations Antoniouk, A.Val Antoniouk, A.Vict. We consider flows, generated by nonlinear differential equations on manifold that could also contain random terms and correspond to the second order parabolic equations. We demonstrate that the rigorous statement of the regularity problems for differential flows on noncompact manifolds requires the geometrically rigorous revision of definition of the high order variation with respect to the initial data and parameters. The main attention is devoted to the study of influence of the geometry and nonlinearities of coefficients on the regularity properties. To reach this aim we use the nonlinear symmetries of high order differential calculus and study a set of corresponding nonlinear estimates on variations. The arising conditions on regularity generalize the Krylov-Rosovskii-Pardoux conditions from linear space to the manifold setting. They also lead to the smooth and smoothing properties of associated Feller semigroups. 2004 Article Nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations / A.Val. Antoniouk, A.Vict. Antoniouk // Український математичний вісник. — 2004. — Т. 1, № 4. — С. 449-484. — Бібліогр.: 23 назв. — англ. 1810-3200 2000 MSC. 35K05, 47J20, 53B21, 58J35, 60H07, 60H10, 60H30 http://dspace.nbuv.gov.ua/handle/123456789/124626 en Український математичний вісник Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider flows, generated by nonlinear differential equations on manifold that could also contain random terms and correspond to the second order parabolic equations. We demonstrate that the rigorous statement of the regularity problems for differential flows on noncompact manifolds requires the geometrically rigorous revision of definition of the high order variation with respect to the initial data and parameters. The main attention is devoted to the study of influence of the geometry and nonlinearities of coefficients on the regularity properties. To reach this aim we use the nonlinear symmetries of high order differential calculus and study a set of corresponding nonlinear estimates on variations. The arising conditions on regularity generalize the Krylov-Rosovskii-Pardoux conditions from linear space to the manifold setting. They also lead to the smooth and smoothing properties of associated Feller semigroups. |
format |
Article |
author |
Antoniouk, A.Val Antoniouk, A.Vict. |
spellingShingle |
Antoniouk, A.Val Antoniouk, A.Vict. Nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations Український математичний вісник |
author_facet |
Antoniouk, A.Val Antoniouk, A.Vict. |
author_sort |
Antoniouk, A.Val |
title |
Nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations |
title_short |
Nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations |
title_full |
Nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations |
title_fullStr |
Nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations |
title_full_unstemmed |
Nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations |
title_sort |
nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2004 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/124626 |
citation_txt |
Nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations / A.Val. Antoniouk, A.Vict. Antoniouk // Український математичний вісник. — 2004. — Т. 1, № 4. — С. 449-484. — Бібліогр.: 23 назв. — англ. |
series |
Український математичний вісник |
work_keys_str_mv |
AT antonioukaval nonlinearcalculusofvariationsfordifferentialflowsonmanifoldsgeometricallycorrectintroductionofcovariantandstochasticvariations AT antonioukavict nonlinearcalculusofvariationsfordifferentialflowsonmanifoldsgeometricallycorrectintroductionofcovariantandstochasticvariations |
first_indexed |
2023-10-18T20:46:47Z |
last_indexed |
2023-10-18T20:46:47Z |
_version_ |
1796151088589570048 |