Semilinear parabolic equations with superlinear reaction terms, and application to some convection-diffusion problems

We are interested in the existence of distributional solutions for two types of nonlinear evolution problems, whose models are (1.1) and (1.2) below. In the first one the nonlinear reaction term depends on the solution with a slightly superlinear growth. In the second one we consider a first order t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Dall'Aglio, A., Giachett, D., Segura de Leon, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124629
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Semilinear parabolic equations with superlinear reaction terms, and application to some convection-diffusion problems / A. Dall'Aglio, D. Giachett, S. Segura de Leon // Український математичний вісник. — 2004. — Т. 1, № 4. — С. 518-531. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We are interested in the existence of distributional solutions for two types of nonlinear evolution problems, whose models are (1.1) and (1.2) below. In the first one the nonlinear reaction term depends on the solution with a slightly superlinear growth. In the second one we consider a first order term depending also on the gradient of the solution in a quadratic way. The two problems are strictly related from the point of view of the a priori estimates we can obtain on their solutions. We point out that no boundedness is assumed on the data of the problems. This implies that the methods involving sub/super-solutions do not apply, and we have to use some convenient test-function to prove the a priori estimates.