Алгебраически вырожденные приближения булевых функций
Исследуются свойства k-мерных приближений булевых функций. Одним из основных результатов является теорема о строении k-мерных функций степени d, находящихся на расстоянии не более 2^(n-d)(1- ε), ε∊(0,1), от заданной булевой функции n переменных, 1≤d≤k≤n, ε∊(0,1). Эта теорема существенно усиливает ра...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2014
|
Назва видання: | Кибернетика и системный анализ |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/124734 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Алгебраически вырожденные приближения булевых функций / А.Н. Алексейчук, С.Н. Конюшок // Кибернетика и системный анализ. — 2014. — Т. 50, № 6. — С. 3-14. — Бібліогр.: 12 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-124734 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1247342017-10-04T03:03:00Z Алгебраически вырожденные приближения булевых функций Алексейчук, А.Н. Конюшок, С.Н. Кибернетика Исследуются свойства k-мерных приближений булевых функций. Одним из основных результатов является теорема о строении k-мерных функций степени d, находящихся на расстоянии не более 2^(n-d)(1- ε), ε∊(0,1), от заданной булевой функции n переменных, 1≤d≤k≤n, ε∊(0,1). Эта теорема существенно усиливает ранее известный результат П. Гопалана и позволяет заметно повысить эффективность предложенного им алгоритма построения всех указанных k-мерных булевых функций. Досліджуються властивості k-вимірних наближень булевих функцій. Одним з основних результат ів є теорема про будову k-вимірних функцій степеня d, що знаходяться на відстані не більше 2^(n-d)(1- ε), ε∊(0,1), від заданої булевої функції n змінних, 1≤d≤k≤n, ε∊(0,1). Ця теорема суттєво підсилює раніше відомий результат П. Гопалана та дозволяє значно підвищити ефективність запропонованого ним алгоритму побудови усіх зазначених k-вимірних булевих функцій. The properties of k-dimensional approximations of Boolean functions are analyzed. One of the main results is a theorem that specifies the structure of k-dimensional functions of degree d within the distance of 2^(n-d)(1- ε), ε∊(0,1), from a specified n-variable function, 1≤d≤k≤n, ε∊(0,1). This theorem significantly improves Gopalan’s result and notably increases the efficiency of his algorithm for finding all of the mentioned k-dimensional Boolean functions. 2014 Article Алгебраически вырожденные приближения булевых функций / А.Н. Алексейчук, С.Н. Конюшок // Кибернетика и системный анализ. — 2014. — Т. 50, № 6. — С. 3-14. — Бібліогр.: 12 назв. — рос. 0023-1274 http://dspace.nbuv.gov.ua/handle/123456789/124734 519.7 ru Кибернетика и системный анализ Інститут кібернетики ім. В.М. Глушкова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Кибернетика Кибернетика |
spellingShingle |
Кибернетика Кибернетика Алексейчук, А.Н. Конюшок, С.Н. Алгебраически вырожденные приближения булевых функций Кибернетика и системный анализ |
description |
Исследуются свойства k-мерных приближений булевых функций. Одним из основных результатов является теорема о строении k-мерных функций степени d, находящихся на расстоянии не более 2^(n-d)(1- ε), ε∊(0,1), от заданной булевой функции n переменных, 1≤d≤k≤n, ε∊(0,1). Эта теорема существенно усиливает ранее известный результат П. Гопалана и позволяет заметно повысить эффективность предложенного им алгоритма построения всех указанных k-мерных булевых функций. |
format |
Article |
author |
Алексейчук, А.Н. Конюшок, С.Н. |
author_facet |
Алексейчук, А.Н. Конюшок, С.Н. |
author_sort |
Алексейчук, А.Н. |
title |
Алгебраически вырожденные приближения булевых функций |
title_short |
Алгебраически вырожденные приближения булевых функций |
title_full |
Алгебраически вырожденные приближения булевых функций |
title_fullStr |
Алгебраически вырожденные приближения булевых функций |
title_full_unstemmed |
Алгебраически вырожденные приближения булевых функций |
title_sort |
алгебраически вырожденные приближения булевых функций |
publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
publishDate |
2014 |
topic_facet |
Кибернетика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/124734 |
citation_txt |
Алгебраически вырожденные приближения булевых функций / А.Н. Алексейчук, С.Н. Конюшок // Кибернетика и системный анализ. — 2014. — Т. 50, № 6. — С. 3-14. — Бібліогр.: 12 назв. — рос. |
series |
Кибернетика и системный анализ |
work_keys_str_mv |
AT aleksejčukan algebraičeskivyroždennyepribliženiâbulevyhfunkcij AT konûšoksn algebraičeskivyroždennyepribliženiâbulevyhfunkcij |
first_indexed |
2023-10-18T20:47:04Z |
last_indexed |
2023-10-18T20:47:04Z |
_version_ |
1796151099821916160 |