Алгебраически вырожденные приближения булевых функций

Исследуются свойства k-мерных приближений булевых функций. Одним из основных результатов является теорема о строении k-мерных функций степени d, находящихся на расстоянии не более 2^(n-d)(1- ε), ε∊(0,1), от заданной булевой функции n переменных, 1≤d≤k≤n, ε∊(0,1). Эта теорема существенно усиливает ра...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Алексейчук, А.Н., Конюшок, С.Н.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2014
Назва видання:Кибернетика и системный анализ
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124734
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Алгебраически вырожденные приближения булевых функций / А.Н. Алексейчук, С.Н. Конюшок // Кибернетика и системный анализ. — 2014. — Т. 50, № 6. — С. 3-14. — Бібліогр.: 12 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-124734
record_format dspace
spelling irk-123456789-1247342017-10-04T03:03:00Z Алгебраически вырожденные приближения булевых функций Алексейчук, А.Н. Конюшок, С.Н. Кибернетика Исследуются свойства k-мерных приближений булевых функций. Одним из основных результатов является теорема о строении k-мерных функций степени d, находящихся на расстоянии не более 2^(n-d)(1- ε), ε∊(0,1), от заданной булевой функции n переменных, 1≤d≤k≤n, ε∊(0,1). Эта теорема существенно усиливает ранее известный результат П. Гопалана и позволяет заметно повысить эффективность предложенного им алгоритма построения всех указанных k-мерных булевых функций. Досліджуються властивості k-вимірних наближень булевих функцій. Одним з основних результат ів є теорема про будову k-вимірних функцій степеня d, що знаходяться на відстані не більше 2^(n-d)(1- ε), ε∊(0,1), від заданої булевої функції n змінних, 1≤d≤k≤n, ε∊(0,1). Ця теорема суттєво підсилює раніше відомий результат П. Гопалана та дозволяє значно підвищити ефективність запропонованого ним алгоритму побудови усіх зазначених k-вимірних булевих функцій. The properties of k-dimensional approximations of Boolean functions are analyzed. One of the main results is a theorem that specifies the structure of k-dimensional functions of degree d within the distance of 2^(n-d)(1- ε), ε∊(0,1), from a specified n-variable function, 1≤d≤k≤n, ε∊(0,1). This theorem significantly improves Gopalan’s result and notably increases the efficiency of his algorithm for finding all of the mentioned k-dimensional Boolean functions. 2014 Article Алгебраически вырожденные приближения булевых функций / А.Н. Алексейчук, С.Н. Конюшок // Кибернетика и системный анализ. — 2014. — Т. 50, № 6. — С. 3-14. — Бібліогр.: 12 назв. — рос. 0023-1274 http://dspace.nbuv.gov.ua/handle/123456789/124734 519.7 ru Кибернетика и системный анализ Інститут кібернетики ім. В.М. Глушкова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Кибернетика
Кибернетика
spellingShingle Кибернетика
Кибернетика
Алексейчук, А.Н.
Конюшок, С.Н.
Алгебраически вырожденные приближения булевых функций
Кибернетика и системный анализ
description Исследуются свойства k-мерных приближений булевых функций. Одним из основных результатов является теорема о строении k-мерных функций степени d, находящихся на расстоянии не более 2^(n-d)(1- ε), ε∊(0,1), от заданной булевой функции n переменных, 1≤d≤k≤n, ε∊(0,1). Эта теорема существенно усиливает ранее известный результат П. Гопалана и позволяет заметно повысить эффективность предложенного им алгоритма построения всех указанных k-мерных булевых функций.
format Article
author Алексейчук, А.Н.
Конюшок, С.Н.
author_facet Алексейчук, А.Н.
Конюшок, С.Н.
author_sort Алексейчук, А.Н.
title Алгебраически вырожденные приближения булевых функций
title_short Алгебраически вырожденные приближения булевых функций
title_full Алгебраически вырожденные приближения булевых функций
title_fullStr Алгебраически вырожденные приближения булевых функций
title_full_unstemmed Алгебраически вырожденные приближения булевых функций
title_sort алгебраически вырожденные приближения булевых функций
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
publishDate 2014
topic_facet Кибернетика
url http://dspace.nbuv.gov.ua/handle/123456789/124734
citation_txt Алгебраически вырожденные приближения булевых функций / А.Н. Алексейчук, С.Н. Конюшок // Кибернетика и системный анализ. — 2014. — Т. 50, № 6. — С. 3-14. — Бібліогр.: 12 назв. — рос.
series Кибернетика и системный анализ
work_keys_str_mv AT aleksejčukan algebraičeskivyroždennyepribliženiâbulevyhfunkcij
AT konûšoksn algebraičeskivyroždennyepribliženiâbulevyhfunkcij
first_indexed 2023-10-18T20:47:04Z
last_indexed 2023-10-18T20:47:04Z
_version_ 1796151099821916160