2025-02-23T12:44:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124758%22&qt=morelikethis&rows=5
2025-02-23T12:44:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-124758%22&qt=morelikethis&rows=5
2025-02-23T12:44:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T12:44:10-05:00 DEBUG: Deserialized SOLR response
О двухциклической системе обслуживания
Ласло Лакатош [1, 2] ввел в рассмотрение систему обслуживания, в которой время ожидания V требования увеличивается до величины W, кратной T. Эта постановка задачи взята из авиации: величина T интерпретируется как время обхода самолетом круга, на который он отправляется в случае занятости взлетно-пос...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2015
|
Series: | Кибернетика и системный анализ |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/124758 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-124758 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1247582017-10-05T03:02:43Z О двухциклической системе обслуживания Коваленко, И.Н. Системный анализ Ласло Лакатош [1, 2] ввел в рассмотрение систему обслуживания, в которой время ожидания V требования увеличивается до величины W, кратной T. Эта постановка задачи взята из авиации: величина T интерпретируется как время обхода самолетом круга, на который он отправляется в случае занятости взлетно-посадочной полосы. В настоящей статье изучается схема обслуживания, в которой V увеличивается до величины T1x+T2y , где T1 и T2 — заданные числа (времена обхода двух кругов), x и y — зависимые от V целые числа (количества их обходов). Доказана эргодическая теорема для соответствующей вложенной цепи Маркова. Приведен алгоритм вычисления x и y по заданному значению V. Л. Лакатош ввів до розгляду систему обслуговування, в якій час очікування V вимоги збільшується до величини, кратної T. Ця модель умотивована проблемами авіації: T інтерпретується як час обходу літаком кола у випадку зайнятості смуги для зльоту і посадки. У даній статті вивчається система обслуговування, в якій V зростає до величини T1x+T2y, де T1 і T2 — задані числа (терміни часу обходу двох кіл), x та y — залежні від V цілі числа (кількість обходів). Доведено ергодичну теорему для відповідного ланцюга Маркова. Наведено алгоритм обчислення x та y за заданим значенням V. L. Lakatos introduced a queuing system in which the waiting time V of a customer is increased up to a value multiple of T. The model is motivated by a problem occurred in aviation. Indeed, T is just the aircraft round time of the emergency circle as soon as the runway is occupied. In the presented paper, a queuing system is considered in which V is increased up to the time T1x+T2y, where T1 and T2 are constant time intervals (round times of two emergency circles) whereas x and y are V-dependent integers (numbers of rounds). An ergodic theorem is proved for a proper embedded Markov chain. An algorithm is given to compute x and y given V. 2015 Article О двухциклической системе обслуживания / И.Н. Коваленко // Кибернетика и системный анализ. — 2015. — Т. 51, № 1. — С. 59-64. — Бібліогр.: 9 назв. — рос. 0023-1274 http://dspace.nbuv.gov.ua/handle/123456789/124758 519.572 ru Кибернетика и системный анализ Інститут кібернетики ім. В.М. Глушкова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Системный анализ Системный анализ |
spellingShingle |
Системный анализ Системный анализ Коваленко, И.Н. О двухциклической системе обслуживания Кибернетика и системный анализ |
description |
Ласло Лакатош [1, 2] ввел в рассмотрение систему обслуживания, в которой время ожидания V требования увеличивается до величины W, кратной T. Эта постановка задачи взята из авиации: величина T интерпретируется как время обхода самолетом круга, на который он отправляется в случае занятости взлетно-посадочной полосы. В настоящей статье изучается схема обслуживания, в которой V увеличивается до величины T1x+T2y , где T1 и T2 — заданные числа (времена обхода двух кругов), x и y — зависимые от V целые числа (количества их обходов). Доказана эргодическая теорема для соответствующей вложенной цепи Маркова. Приведен алгоритм вычисления x и y по заданному значению V. |
format |
Article |
author |
Коваленко, И.Н. |
author_facet |
Коваленко, И.Н. |
author_sort |
Коваленко, И.Н. |
title |
О двухциклической системе обслуживания |
title_short |
О двухциклической системе обслуживания |
title_full |
О двухциклической системе обслуживания |
title_fullStr |
О двухциклической системе обслуживания |
title_full_unstemmed |
О двухциклической системе обслуживания |
title_sort |
о двухциклической системе обслуживания |
publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
publishDate |
2015 |
topic_facet |
Системный анализ |
url |
http://dspace.nbuv.gov.ua/handle/123456789/124758 |
citation_txt |
О двухциклической системе обслуживания / И.Н. Коваленко // Кибернетика и системный анализ. — 2015. — Т. 51, № 1. — С. 59-64. — Бібліогр.: 9 назв. — рос. |
series |
Кибернетика и системный анализ |
work_keys_str_mv |
AT kovalenkoin odvuhcikličeskojsistemeobsluživaniâ |
first_indexed |
2023-10-18T20:47:08Z |
last_indexed |
2023-10-18T20:47:08Z |
_version_ |
1796151102365761536 |