О сложности вычисления параметров устойчивости в задачах булева программирования

Показано, что для NP-полных задач трудоемким является даже вычисление шара устойчивости радиуса 1 оптимального решения (т.е. при P ≠ NP для этого не существует полиномиального алгоритма). При использовании жадных алгоритмов для задачи о покрытии множествами (задачи о ранце) при радиусе устойчивости...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Михайлюк, В.А., Лищук, Н.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2015
Назва видання:Кибернетика и системный анализ
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/124906
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О сложности вычисления параметров устойчивости в задачах булева программирования / В.А. Михайлюк, Н.В. Лищук // Кибернетика и системный анализ. — 2015. — Т. 51, № 5. — С. 56-62. — Бібліогр.: 14 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Показано, что для NP-полных задач трудоемким является даже вычисление шара устойчивости радиуса 1 оптимального решения (т.е. при P ≠ NP для этого не существует полиномиального алгоритма). При использовании жадных алгоритмов для задачи о покрытии множествами (задачи о ранце) при радиусе устойчивости r = O(1) существуют полиномиальные алгоритмы вычисления шара устойчивости радиуса r lnm-приближенного решения (1-приближенного решения).