Сonvergence of Sequential Gradient Learning Algorithms in Neural Networks for Online Identification of Nonlinear Systems: a Special Case
The paper deals with the asymptotic properties of an online learning procedure for identifying non-linear systems via neural networks models of these systems. The probabilistic convergence condi-tions of this procedure are presented for the special case where a nonlinearity can exactly be ap-proxima...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
2015
|
Назва видання: | Індуктивне моделювання складних систем |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/125021 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Сonvergence of Sequential Gradient Learning Algorithms in Neural Networks for Online Identification of Nonlinear Systems: a Special Case / L.S. Zhiteckii, S.A. Nikolaienko // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2015. — Вип. 7. — С. 46-58. — Бібліогр.: 27 назв. — англ |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The paper deals with the asymptotic properties of an online learning procedure for identifying non-linear systems via neural networks models of these systems. The probabilistic convergence condi-tions of this procedure are presented for the special case where a nonlinearity can exactly be ap-proximated by a suitable neural network. Keywords: identification, nonlinear system, neural network, learning algorithm, stochastic environment, convergence. |
---|