Про рівняння Маккіна–Власова з нескінченною масою
Розглянуто нескінченні системи стохастичних диференціальних рівнянь, що описують рух взаємодіючих частинок у випадковому середовищі. Доведено теореми існування та єдиності розв'язків. Також доведено граничну теорему для відповідних мірозначних процесів у випадку, коли маса кожної частинки пря...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2016
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/125821 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Про рівняння Маккіна–Власова з нескінченною масою / М.В. Танцюра // Доповіді Національної академії наук України. — 2016. — № 8. — С. 19-25. — Бібліогр.: 7 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-125821 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1258212017-11-06T03:03:16Z Про рівняння Маккіна–Власова з нескінченною масою Танцюра, М.В. Математика Розглянуто нескінченні системи стохастичних диференціальних рівнянь, що описують рух взаємодіючих частинок у випадковому середовищі. Доведено теореми існування та єдиності розв'язків. Також доведено граничну теорему для відповідних мірозначних процесів у випадку, коли маса кожної частинки прямує до нуля, а густота частинок зростає до нескінченності. Рассмотрены бесконечные системы стохастических дифференциальных уравнений, описывающие движение взаимодействующих частиц в случайной среде. Доказаны теоремы существования и единственности решений. Также доказана предельная теорема для соответствующих мерозначных процессов в случае, когда масса каждой частицы стремится к нулю, а плотность частиц возрастает к бесконечности. We consider infinite systems of stochastic differential equations that describe the motion of interacting particles in a random environment. Theorems on existence and uniqueness of the solution are proved. We also obtain a limit theorem for corresponding measure-valued processes in the case where the mass of each particle tends to zero, and the density of particles grows to infinity. 2016 Article Про рівняння Маккіна–Власова з нескінченною масою / М.В. Танцюра // Доповіді Національної академії наук України. — 2016. — № 8. — С. 19-25. — Бібліогр.: 7 назв. — укр. 1025-6415 DOI: doi.org/10.15407/dopovidi2016.08.019 http://dspace.nbuv.gov.ua/handle/123456789/125821 519.21 uk Доповіді НАН України Видавничий дім "Академперіодика" НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Ukrainian |
topic |
Математика Математика |
spellingShingle |
Математика Математика Танцюра, М.В. Про рівняння Маккіна–Власова з нескінченною масою Доповіді НАН України |
description |
Розглянуто нескінченні системи стохастичних диференціальних рівнянь, що описують
рух взаємодіючих частинок у випадковому середовищі. Доведено теореми існування та
єдиності розв'язків. Також доведено граничну теорему для відповідних мірозначних процесів у випадку, коли маса кожної частинки прямує до нуля, а густота частинок зростає до нескінченності. |
format |
Article |
author |
Танцюра, М.В. |
author_facet |
Танцюра, М.В. |
author_sort |
Танцюра, М.В. |
title |
Про рівняння Маккіна–Власова з нескінченною масою |
title_short |
Про рівняння Маккіна–Власова з нескінченною масою |
title_full |
Про рівняння Маккіна–Власова з нескінченною масою |
title_fullStr |
Про рівняння Маккіна–Власова з нескінченною масою |
title_full_unstemmed |
Про рівняння Маккіна–Власова з нескінченною масою |
title_sort |
про рівняння маккіна–власова з нескінченною масою |
publisher |
Видавничий дім "Академперіодика" НАН України |
publishDate |
2016 |
topic_facet |
Математика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/125821 |
citation_txt |
Про рівняння Маккіна–Власова з нескінченною масою / М.В. Танцюра // Доповіді Національної академії наук України. — 2016. — № 8. — С. 19-25. — Бібліогр.: 7 назв. — укр. |
series |
Доповіді НАН України |
work_keys_str_mv |
AT tancûramv prorívnânnâmakkínavlasovazneskínčennoûmasoû |
first_indexed |
2023-10-18T20:49:25Z |
last_indexed |
2023-10-18T20:49:25Z |
_version_ |
1796151201576779776 |