Thermal stability of ultrahard polycrystalline diamond composite materials

Thermal stability of the ultrahard polycrystalline diamond (UHPCD) composite material developed by the reinforcement of the polycrystalline diamond (PCD) with chemical vapor deposition (CVD) diamond has been investigated in a flow of argon at 1200 °C. The indentation, Raman spectra and wear test hav...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Meng, D., Yue, W., Lin, F., Wang, C., Wu, Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України 2015
Назва видання:Сверхтвердые материалы
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/126156
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Thermal stability of ultrahard polycrystalline diamond composite materials / D. Meng, W. Yue, F. Lin, C. Wang, Z. Wu // Сверхтвердые материалы. — 2015. — № 2. — С. 3-10. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-126156
record_format dspace
spelling irk-123456789-1261562017-11-17T03:02:37Z Thermal stability of ultrahard polycrystalline diamond composite materials Meng, D. Yue, W. Lin, F. Wang, C. Wu, Z. Получение, структура, свойства Thermal stability of the ultrahard polycrystalline diamond (UHPCD) composite material developed by the reinforcement of the polycrystalline diamond (PCD) with chemical vapor deposition (CVD) diamond has been investigated in a flow of argon at 1200 °C. The indentation, Raman spectra and wear test have been performed to compare hardness, C–C structure and wear resistance of untreated and thermal treated UHPCD. It has been shown that the hardness of CVD diamond in UHPCD attains 133±7 GPa after high pressure and high temperature, while after thermal treatment the hardness decreases to 109±3 GPa, and the wear resistance of the thermal treated UHPCD decreases from 0.17 to 0.6 mg/km. The narrowing of full width at half maximum and shift of Raman peak to lower frequencies of CVD diamond in thermal treated UHPCD imply a decrease of crystal structural defects and compressive stresses, which results in a drop of the hardness of CVD diamond in a thermal treated UHPCD. The higher wear rate of thermal treated UHPCD is due to the lower hardness. Досліджено термічну стабільність надтвердого полікристалічного алмазного (UHPCD) композиційного матеріалу, отриманого армуванням полікристалічного алмазу після хімічного осадження (CVD) алмазу в потоці аргону при 1200 °C. Для порівняння твердості, C–C-структури і зносостійкості необробленого та термообробленого UHPCD було досліджено заглиблення індентора, спектри комбінаційного розсіювання та знос. Показано, що твердість CVD-алмазу в UHPCD досягає 133±7 ГПа після дії високого тиску і високої температури, а після термообробки зменшується до 109±3 ГПа, зносостійкість UHPCD після термообробки зменшується від 0,17 до 0,6 мг/км. Звуження напівширини і зсув піку комбінаційного розсіювання в область низьких частот CVD-алмазу в термообробленому UHPCD характеризує зменшення кристалічних структурних дефектів і напружень стиску, що призводить до зниження твердості CVD-алмазу в термообробленому UHPCD. Вища швидкість зносу термообробленого UHPCD пов’язана з більш низькою твердістю. Исследована термическая стабильность сверхтвердого поликристаллического алмазного (UHPCD) композиционного материала, полученного армированием поликристаллического алмаза после химического осаждения (CVD) алмаза в потоке аргона при 1200 °C. Для сравнения твердости, C–C-структуры и износостойкости необработанного и термообработанного UHPCD были исследованы глубина проникновения индентора, спектры комбинационного рассеяния и износ. Показано, что твердость CVD-алмаза в UHPCD достигает 133±7 ГПа после действия высокого давления и высокой температуры, а после термической обработки уменьшается до 109±3 ГПа, износостойкость после термической обработки UHPCD уменьшается от 0,17 до 0,6 мг/км. Сужение полуширины и сдвиг пика комбинационного рассеяния в область низких частот CVD- алмаза в термообработанном UHPCD характеризует уменьшение кристаллических структурных дефектов и напряжений сжатия, что приводит к снижению твердости CVD-алмаза в термообработанном UHPCD. Более высокая скорость износа термически обработанного UHPCD связана с более низкой твердостью. 2015 Article Thermal stability of ultrahard polycrystalline diamond composite materials / D. Meng, W. Yue, F. Lin, C. Wang, Z. Wu // Сверхтвердые материалы. — 2015. — № 2. — С. 3-10. — Бібліогр.: 15 назв. — англ. 0203-3119 http://dspace.nbuv.gov.ua/handle/123456789/126156 621.921.34-419:539.533 en Сверхтвердые материалы Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Получение, структура, свойства
Получение, структура, свойства
spellingShingle Получение, структура, свойства
Получение, структура, свойства
Meng, D.
Yue, W.
Lin, F.
Wang, C.
Wu, Z.
Thermal stability of ultrahard polycrystalline diamond composite materials
Сверхтвердые материалы
description Thermal stability of the ultrahard polycrystalline diamond (UHPCD) composite material developed by the reinforcement of the polycrystalline diamond (PCD) with chemical vapor deposition (CVD) diamond has been investigated in a flow of argon at 1200 °C. The indentation, Raman spectra and wear test have been performed to compare hardness, C–C structure and wear resistance of untreated and thermal treated UHPCD. It has been shown that the hardness of CVD diamond in UHPCD attains 133±7 GPa after high pressure and high temperature, while after thermal treatment the hardness decreases to 109±3 GPa, and the wear resistance of the thermal treated UHPCD decreases from 0.17 to 0.6 mg/km. The narrowing of full width at half maximum and shift of Raman peak to lower frequencies of CVD diamond in thermal treated UHPCD imply a decrease of crystal structural defects and compressive stresses, which results in a drop of the hardness of CVD diamond in a thermal treated UHPCD. The higher wear rate of thermal treated UHPCD is due to the lower hardness.
format Article
author Meng, D.
Yue, W.
Lin, F.
Wang, C.
Wu, Z.
author_facet Meng, D.
Yue, W.
Lin, F.
Wang, C.
Wu, Z.
author_sort Meng, D.
title Thermal stability of ultrahard polycrystalline diamond composite materials
title_short Thermal stability of ultrahard polycrystalline diamond composite materials
title_full Thermal stability of ultrahard polycrystalline diamond composite materials
title_fullStr Thermal stability of ultrahard polycrystalline diamond composite materials
title_full_unstemmed Thermal stability of ultrahard polycrystalline diamond composite materials
title_sort thermal stability of ultrahard polycrystalline diamond composite materials
publisher Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
publishDate 2015
topic_facet Получение, структура, свойства
url http://dspace.nbuv.gov.ua/handle/123456789/126156
citation_txt Thermal stability of ultrahard polycrystalline diamond composite materials / D. Meng, W. Yue, F. Lin, C. Wang, Z. Wu // Сверхтвердые материалы. — 2015. — № 2. — С. 3-10. — Бібліогр.: 15 назв. — англ.
series Сверхтвердые материалы
work_keys_str_mv AT mengd thermalstabilityofultrahardpolycrystallinediamondcompositematerials
AT yuew thermalstabilityofultrahardpolycrystallinediamondcompositematerials
AT linf thermalstabilityofultrahardpolycrystallinediamondcompositematerials
AT wangc thermalstabilityofultrahardpolycrystallinediamondcompositematerials
AT wuz thermalstabilityofultrahardpolycrystallinediamondcompositematerials
first_indexed 2023-10-18T20:50:11Z
last_indexed 2023-10-18T20:50:11Z
_version_ 1796151233865580544