Energy spectrum of the quantum vortices configurations
The energy spectra of the 3D velocity field, induced by various vortex filaments configurations are reviewed. The especial attention is paid to configurations generating the Kolmogorov type energy spectrum E(k) ∝ k⁻⁵/³. The motivation of this work is related to the problem of modeling classical tu...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2015
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/127937 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Energy spectrum of the quantum vortices configurations / S. K. Nemirovskii // Физика низких температур. — 2015. — Т. 41, № 6. — С. 608-614. — Бібліогр.: 34 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The energy spectra of the 3D velocity field, induced by various vortex filaments configurations are reviewed.
The especial attention is paid to configurations generating the Kolmogorov type energy spectrum E(k) ∝ k⁻⁵/³. The
motivation of this work is related to the problem of modeling classical turbulence with a set of chaotic vortex filaments.
The quantity <v(k)v(–k)> can be exactly calculated, provided that we know the probability distribution functional P({s(ξ,t)}) of vortex loops configurations. The knowledge of P({s(ξ,t)}) is identical to the full solution of
the problem of quantum turbulence and, in general, P is unknown. One of the simplifications is to investigate various
truthful vortex configurations which can be elements of real vortex tangles. These configurations are: the uniform
and nonuniform vortex arrays, the straight lines with excited Kelvin waves on it and the reconnecting vortex
filaments. We demonstrate that the spectra E(k), generated by the these configurations, are close to the Kolmogorov
dependence ∝ k⁻⁵/³, and discuss the reason for this as well as the reason for deviation. |
---|