Vortex dynamics in thin elliptic ferromagnetic nanodisks
Vortex gyrotropic motion in thin ferromagnetic nanodisks of elliptical shape is described here for a pure vortex state and for a situation with thermal fluctuations. The system is analyzed using numerical simulations of the Landau–Lifshitz–Gilbert (LLG) equations, including the demagnetization fie...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2015
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/128084 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Vortex dynamics in thin elliptic ferromagnetic nanodisks / G.M. Wysin // Физика низких температур. — 2015. — Т. 41, № 10. — С. 1009–1023. — Бібліогр.: 34 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Vortex gyrotropic motion in thin ferromagnetic nanodisks of elliptical shape is described here for a pure vortex
state and for a situation with thermal fluctuations. The system is analyzed using numerical simulations of the
Landau–Lifshitz–Gilbert (LLG) equations, including the demagnetization field calculated with a Green's function
approach for thin film problems. At finite temperature the thermalized dynamics is found using a second order
Heun algorithm for a magnetic Langevin equation based on the LLG equations. The vortex state is stable only
within a limited range of ellipticity, outside of which a quasi-single-domain becomes the prefered minimum
energy state. A vortex is found to move in an elliptical potential, whose force constants along the principal axes
are determined numerically. The eccentricity of vortex motion is directly related to the force constants. Elliptical
vortex motion is produced spontaneously by thermal fluctuations. The vortex position and velocity distributions
in thermal equilibrium are Boltzmann distributions. The results show that vortex motion in elliptical disks can be
described by a Thiele equation |
---|