2025-02-23T13:19:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-128460%22&qt=morelikethis&rows=5
2025-02-23T13:19:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-128460%22&qt=morelikethis&rows=5
2025-02-23T13:19:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:19:53-05:00 DEBUG: Deserialized SOLR response

Effect of step-edge on spectral properties and planar stability of metallic bigraphene

Phonon and electron spectra of metallic bigraphene are analyzed in the presence of step-edge crystal imperfection. Different geometries of step-edge are considered. The dynamic planar stability of the considered structure is proved for temperatures above the ambient. The number of phonon states is...

Full description

Saved in:
Bibliographic Details
Main Authors: Eremenko, V.V., Sirenko, V.A., Gospodarev, I.A., Syrkin, E.S., Feodosyev, S.B., Bondar, I.S., Saxena, S.S., Feher, A., Minakova, K.A.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2016
Series:Физика низких температур
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/128460
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phonon and electron spectra of metallic bigraphene are analyzed in the presence of step-edge crystal imperfection. Different geometries of step-edge are considered. The dynamic planar stability of the considered structure is proved for temperatures above the ambient. The number of phonon states is shown to grow near the K-point of the first Brillouin zone, compared to pristine graphene. It is found, that this type of defects causes substantially nonuniform distribution of electron states and the pronounced increase in the number of states with energies close to Fermi energy can be expected in electron spectrum of the graphene-based compounds. The performed calculations are in good agreement with inelastic neutron, x-ray and Raman measurements.