О природе вкладов в энтропию полинговского льда
Проведен расчет энтропии и корреляционных функций полинговского льда - модели, в которой энергия микросостояний может принимать только два значения: нуль или бесконечность. Центральный пункт предложенного подхода - использование канонического разложения термодинамических функций по неприводимым мног...
Збережено в:
Дата: | 2003 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2003
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/128788 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О природе вкладов в энтропию полинговского льда / Т.В. Локотош, О.М. Горун // Физика низких температур. — 2003. — Т. 29, № 2. — С. 179-188. — Бібліогр.: 20. назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Проведен расчет энтропии и корреляционных функций полинговского льда - модели, в которой энергия микросостояний может принимать только два значения: нуль или бесконечность. Центральный пункт предложенного подхода - использование канонического разложения термодинамических функций по неприводимым многочастичным корреляциям. Сформулированы правила редукции, которые устанавливают связь между корреляционными функциями системы порядков 1 , ..., k-1 с корреляционной функцией k-го порядка. Последняя рассчитывается на основе предположения о равной вероятности всех разрешенных конфигураций компактной группы k частиц и условия нормировки. Порядок приближения определяется тем количеством частиц k, корреляции между состояниями которых учитываются. Показано, что значения энтропии плоского полинговского льда с ростом k немонотонно сходятся к ее точному значению, полученному Е. Либом. Наилучшее соответствие отвечает тем приближениям, в которых группа k частиц имеет симметрию решетки и содержит замкнутые контуры водородных связей. Метод может быть расширен на произвольные решеточные системы. |
---|