2025-02-22T10:48:46-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-128819%22&qt=morelikethis&rows=5
2025-02-22T10:48:46-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-128819%22&qt=morelikethis&rows=5
2025-02-22T10:48:46-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:48:46-05:00 DEBUG: Deserialized SOLR response
Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges
This article reviews our recent works on the ion desorption from adsorbed and condensed molecules at low temperature following the core-level photoexcitations using synchrotron soft x-rays. The systems investigated here are adsorbed molecules with relatively heavy molecular weight containing third-r...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2003
|
Series: | Физика низких температур |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/128819 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-128819 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1288192018-01-15T03:04:45Z Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges Yuji Baba Electronically Induced Phenomena: Low Temperature Aspects This article reviews our recent works on the ion desorption from adsorbed and condensed molecules at low temperature following the core-level photoexcitations using synchrotron soft x-rays. The systems investigated here are adsorbed molecules with relatively heavy molecular weight containing third-row elements such as Si, P, S, and Cl. Compared with molecules composed of second-row elements, the highly element-specific and site-specific fragment-ion desorptions were observed when we tune the photon energy at the dipole-allowed 1s→s*(3p*) resonance. On the basis of the resonance Auger decay spectra around the 1s ionization thresholds, the observed highly specific ion desorption is interpreted by the localization of the excited electrons (here we call as "spectator electrons") in the antibonding s* orbital. In order to separate the direct photo-induced process from the indirect processes triggered by the secondary electrons, the photon-stimulated ion desorption was also investigated in well-controlled mono- and multilayered molecules. The results confirmed that the resonant photoexcitation not in the substrate but in the thin films of adsorbates plays a significant role in the realization of the highly specific ion desorption. 2003 Article Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges / Yuji Baba // Физика низких температур. — 2003. — Т. 29, № 3. — С. 303-320. — Бібліогр.: 75 назв. — англ. 0132-6414 PACS: 79.20.La, 29.30.Kv http://dspace.nbuv.gov.ua/handle/123456789/128819 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Electronically Induced Phenomena: Low Temperature Aspects Electronically Induced Phenomena: Low Temperature Aspects |
spellingShingle |
Electronically Induced Phenomena: Low Temperature Aspects Electronically Induced Phenomena: Low Temperature Aspects Yuji Baba Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges Физика низких температур |
description |
This article reviews our recent works on the ion desorption from adsorbed and condensed molecules at low temperature following the core-level photoexcitations using synchrotron soft x-rays. The systems investigated here are adsorbed molecules with relatively heavy molecular weight containing third-row elements such as Si, P, S, and Cl. Compared with molecules composed of second-row elements, the highly element-specific and site-specific fragment-ion desorptions were observed when we tune the photon energy at the dipole-allowed 1s→s*(3p*) resonance. On the basis of the resonance Auger decay spectra around the 1s ionization thresholds, the observed highly specific ion desorption is interpreted by the localization of the excited electrons (here we call as "spectator electrons") in the antibonding s* orbital. In order to separate the direct photo-induced process from the indirect processes triggered by the secondary electrons, the photon-stimulated ion desorption was also investigated in well-controlled mono- and multilayered molecules. The results confirmed that the resonant photoexcitation not in the substrate but in the thin films of adsorbates plays a significant role in the realization of the highly specific ion desorption. |
format |
Article |
author |
Yuji Baba |
author_facet |
Yuji Baba |
author_sort |
Yuji Baba |
title |
Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges |
title_short |
Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges |
title_full |
Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges |
title_fullStr |
Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges |
title_full_unstemmed |
Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges |
title_sort |
element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the k-edges |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2003 |
topic_facet |
Electronically Induced Phenomena: Low Temperature Aspects |
url |
http://dspace.nbuv.gov.ua/handle/123456789/128819 |
citation_txt |
Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges / Yuji Baba // Физика низких температур. — 2003. — Т. 29, № 3. — С. 303-320. — Бібліогр.: 75 назв. — англ. |
series |
Физика низких температур |
work_keys_str_mv |
AT yujibaba elementspecificandsitespecificiondesorptionfromadsorbedmoleculesbydeepcorelevelphotoexcitationatthekedges |
first_indexed |
2023-10-18T20:56:12Z |
last_indexed |
2023-10-18T20:56:12Z |
_version_ |
1796151496197275648 |