Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation

This article reviews our recent work on photo-stimulated ion desorption (PSID) from molecules condensed at low temperature. We have used electron-ion coincidence (EICO) spectroscopy combined with synchrotron radiation. The history and present status of the EICO apparatus is described, as well as our...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Kazuhiko Mase, Mitsuru Nagasono, Shin-ichiro Tanaka, Tetsuji Sekitani, Shin-ichi Nagaoka
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2003
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/128820
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation / Kazuhiko Mase, Mitsuru Nagasono, Shin-ichiro Tanaka, Tetsuji Sekitani, Shin-ichi Nagaoka // Физика низких температур. — 2003. — Т. 29, № 3. — С. 321-341. — Бібліогр.: 106 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-128820
record_format dspace
spelling irk-123456789-1288202018-01-15T03:03:52Z Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation Kazuhiko Mase Mitsuru Nagasono Shin-ichiro Tanaka Tetsuji Sekitani Shin-ichi Nagaoka Electronically Induced Phenomena: Low Temperature Aspects This article reviews our recent work on photo-stimulated ion desorption (PSID) from molecules condensed at low temperature. We have used electron-ion coincidence (EICO) spectroscopy combined with synchrotron radiation. The history and present status of the EICO apparatus is described, as well as our recent investigations of condensed H₂O, NH₃, CH₃CN, and CF₃CH₃. Auger electron photoion coincidence (AEPICO) spectra of condensed H₂O at the O:1s ionization showed that H⁺ desorption was stimulated by O:KVV Auger processes leading to two - hole states (normal- Auger stimulated ion desorption (ASID) mechanism). The driving forces for H⁺ desorption were attributed to the electron missing in the O - H bonding orbitals and the effective hole-hole Coulomb repulsion. The normal ASID mechanism was also demonstrated for condensed NH₃. The H⁺ desorption at the 4a₁ ← O(N):1s resonance of both condensed H₂O and condensed NH₃ was found to be greatly enhanced. Based on the AEPICO spectra the following four-step mechanism was proposed: (1) the 4a₁ ← 1s transition, (2) extension of the HO - H (H₂N - H) distance within the lifetime of the (1s)⁻¹(4a1)¹ state, (3) spectator Auger transitions leading to (valence)⁻²(4a₁)¹ states, and (4) H⁺ desorption. The enhancement of the H⁺ desorption yield was attributed to the repulsive potential surface of the (1s) - 1(4a₁)¹ state. At the 3p ← O:1s resonance of condensed H₂O, on the other hand, the H⁺ yield was found to be decreased. The AEPICO spectra showed that the H⁺ desorption was stimulated by spectator Auger transitions leading to (valence)⁻²(3p)¹ states. The decrease in the H⁺ yield was attributed to a reduction in the effective hole-hole Coulomb repulsion due to shielding by the 3p electron. Photoelectron photoion coincidence (PEPICO) spectra of condensed H₂O showed that the core level of the surface H₂O responsible for the H⁺ desorption was shifted by 0.7 eV from that of the bulk H₂O. The H⁺ desorption from condensed CH₃CN was also investigated. In a study of condensed CF₃CH₃ using PEPICO spectroscopy, site-specific ion desorption was directly verified; that is, H⁺ and CH₃⁺ desorption was predominant for the C:1s photoionization at the -CH₃ site, while C₂Hn⁺, CFCHm⁺, and CF₃⁺ desorption was predominantly induced by the C:1s photoionization at the -CF₃ site. These investigations demonstrate that EICO spectroscopy combined with synchrotron radiation is a powerful tool for studying PSID of molecules condensed at low temperature. 2003 Article Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation / Kazuhiko Mase, Mitsuru Nagasono, Shin-ichiro Tanaka, Tetsuji Sekitani, Shin-ichi Nagaoka // Физика низких температур. — 2003. — Т. 29, № 3. — С. 321-341. — Бібліогр.: 106 назв. — англ. 0132-6414 PACS: 79.20.La, 07.81.+a http://dspace.nbuv.gov.ua/handle/123456789/128820 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Electronically Induced Phenomena: Low Temperature Aspects
Electronically Induced Phenomena: Low Temperature Aspects
spellingShingle Electronically Induced Phenomena: Low Temperature Aspects
Electronically Induced Phenomena: Low Temperature Aspects
Kazuhiko Mase
Mitsuru Nagasono
Shin-ichiro Tanaka
Tetsuji Sekitani
Shin-ichi Nagaoka
Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation
Физика низких температур
description This article reviews our recent work on photo-stimulated ion desorption (PSID) from molecules condensed at low temperature. We have used electron-ion coincidence (EICO) spectroscopy combined with synchrotron radiation. The history and present status of the EICO apparatus is described, as well as our recent investigations of condensed H₂O, NH₃, CH₃CN, and CF₃CH₃. Auger electron photoion coincidence (AEPICO) spectra of condensed H₂O at the O:1s ionization showed that H⁺ desorption was stimulated by O:KVV Auger processes leading to two - hole states (normal- Auger stimulated ion desorption (ASID) mechanism). The driving forces for H⁺ desorption were attributed to the electron missing in the O - H bonding orbitals and the effective hole-hole Coulomb repulsion. The normal ASID mechanism was also demonstrated for condensed NH₃. The H⁺ desorption at the 4a₁ ← O(N):1s resonance of both condensed H₂O and condensed NH₃ was found to be greatly enhanced. Based on the AEPICO spectra the following four-step mechanism was proposed: (1) the 4a₁ ← 1s transition, (2) extension of the HO - H (H₂N - H) distance within the lifetime of the (1s)⁻¹(4a1)¹ state, (3) spectator Auger transitions leading to (valence)⁻²(4a₁)¹ states, and (4) H⁺ desorption. The enhancement of the H⁺ desorption yield was attributed to the repulsive potential surface of the (1s) - 1(4a₁)¹ state. At the 3p ← O:1s resonance of condensed H₂O, on the other hand, the H⁺ yield was found to be decreased. The AEPICO spectra showed that the H⁺ desorption was stimulated by spectator Auger transitions leading to (valence)⁻²(3p)¹ states. The decrease in the H⁺ yield was attributed to a reduction in the effective hole-hole Coulomb repulsion due to shielding by the 3p electron. Photoelectron photoion coincidence (PEPICO) spectra of condensed H₂O showed that the core level of the surface H₂O responsible for the H⁺ desorption was shifted by 0.7 eV from that of the bulk H₂O. The H⁺ desorption from condensed CH₃CN was also investigated. In a study of condensed CF₃CH₃ using PEPICO spectroscopy, site-specific ion desorption was directly verified; that is, H⁺ and CH₃⁺ desorption was predominant for the C:1s photoionization at the -CH₃ site, while C₂Hn⁺, CFCHm⁺, and CF₃⁺ desorption was predominantly induced by the C:1s photoionization at the -CF₃ site. These investigations demonstrate that EICO spectroscopy combined with synchrotron radiation is a powerful tool for studying PSID of molecules condensed at low temperature.
format Article
author Kazuhiko Mase
Mitsuru Nagasono
Shin-ichiro Tanaka
Tetsuji Sekitani
Shin-ichi Nagaoka
author_facet Kazuhiko Mase
Mitsuru Nagasono
Shin-ichiro Tanaka
Tetsuji Sekitani
Shin-ichi Nagaoka
author_sort Kazuhiko Mase
title Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation
title_short Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation
title_full Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation
title_fullStr Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation
title_full_unstemmed Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation
title_sort ion desorption from molecules condensed at low temperature: a study with electron-ion coincidence spectroscopy combined with synchrotron radiation
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2003
topic_facet Electronically Induced Phenomena: Low Temperature Aspects
url http://dspace.nbuv.gov.ua/handle/123456789/128820
citation_txt Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation / Kazuhiko Mase, Mitsuru Nagasono, Shin-ichiro Tanaka, Tetsuji Sekitani, Shin-ichi Nagaoka // Физика низких температур. — 2003. — Т. 29, № 3. — С. 321-341. — Бібліогр.: 106 назв. — англ.
series Физика низких температур
work_keys_str_mv AT kazuhikomase iondesorptionfrommoleculescondensedatlowtemperatureastudywithelectronioncoincidencespectroscopycombinedwithsynchrotronradiation
AT mitsurunagasono iondesorptionfrommoleculescondensedatlowtemperatureastudywithelectronioncoincidencespectroscopycombinedwithsynchrotronradiation
AT shinichirotanaka iondesorptionfrommoleculescondensedatlowtemperatureastudywithelectronioncoincidencespectroscopycombinedwithsynchrotronradiation
AT tetsujisekitani iondesorptionfrommoleculescondensedatlowtemperatureastudywithelectronioncoincidencespectroscopycombinedwithsynchrotronradiation
AT shinichinagaoka iondesorptionfrommoleculescondensedatlowtemperatureastudywithelectronioncoincidencespectroscopycombinedwithsynchrotronradiation
first_indexed 2023-10-18T20:56:12Z
last_indexed 2023-10-18T20:56:12Z
_version_ 1796151496303181824