Spin dephasing in pseudomagnetic fields: susceptibility and geometry
We present a theory of spin dynamics caused by spin-orbit coupling for two-dimensional gases of cold atoms and other quasiparticles with pseudospin 1/2 moving in orbital gauge fields. Our approach is based on the gauge transformation in the form of a SU(2) rotation gauging out the spin-orbit couplin...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2016
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/129111 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Spin dephasing in pseudomagnetic fields: susceptibility and geometry / I.V. Tokatly E.Ya. Sherman // Физика низких температур. — 2016. — Т. 42, № 5. — С. 506-512. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We present a theory of spin dynamics caused by spin-orbit coupling for two-dimensional gases of cold atoms and other quasiparticles with pseudospin 1/2 moving in orbital gauge fields. Our approach is based on the gauge transformation in the form of a SU(2) rotation gauging out the spin-orbit coupling. As a result, the analysis of the spin dynamics is reduced to calculation of the density-related susceptibility of the system without spin-orbit coupling at the wavevector determined by the spin-rotation length. This approach allows one to treat the spin dynamics in terms of the linear response theory for bosonic and fermionic ensembles. We study different regimes of irreversible spin relaxation and coherent spin dynamics in these systems. For bosonic gases the effects of low temperature are crucial due to accumulation of particles in the small-momentum subspace even if the Bose–Einstein condensation does not occur due to the system low dimensionality. |
---|