Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics
Free volume and pore size distribution size in functional micro and macro-micro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics are characterized by positron annihilation lifetime spectroscopy in comparison with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are in...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2016
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/129199 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics / H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, A.I. Popov // Физика низких температур. — 2016. — Т. 42, № 7. — С. 764-769. — Бібліогр.: 52 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-129199 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1291992018-01-17T03:04:19Z Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics Klym, H. Ingram, A. Shpotyuk, O. Hadzaman, I. Solntsev, V. Hotra, O. Popov, A.I. Low-Temperature Radiation Effects in Wide Gap Materials Free volume and pore size distribution size in functional micro and macro-micro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics are characterized by positron annihilation lifetime spectroscopy in comparison with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are interpreted in terms of model implication positron trapping and ortho-positronium decaying. It is shown that free volume of positron traps are the same type for macro and micro modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics. Classic Tao-Eldrup model in spherical approximation is used to calculation of the size of nanopores smaller than 2 nm using the ortho-positronium lifetime. 2016 Article Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics / H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, A.I. Popov // Физика низких температур. — 2016. — Т. 42, № 7. — С. 764-769. — Бібліогр.: 52 назв. — англ. 0132-6414 PACS: 78.70.Bj, 71.60.+z, 81.05.Mh, 82.30.Gg http://dspace.nbuv.gov.ua/handle/123456789/129199 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low-Temperature Radiation Effects in Wide Gap Materials Low-Temperature Radiation Effects in Wide Gap Materials |
spellingShingle |
Low-Temperature Radiation Effects in Wide Gap Materials Low-Temperature Radiation Effects in Wide Gap Materials Klym, H. Ingram, A. Shpotyuk, O. Hadzaman, I. Solntsev, V. Hotra, O. Popov, A.I. Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics Физика низких температур |
description |
Free volume and pore size distribution size in functional micro and macro-micro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics are characterized by positron annihilation lifetime spectroscopy in comparison with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are interpreted in terms of model implication positron trapping and ortho-positronium decaying. It is shown that free volume of positron traps are the same type for macro and micro modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics. Classic Tao-Eldrup model in spherical approximation is used to calculation of the size of nanopores smaller than 2 nm using the ortho-positronium lifetime. |
format |
Article |
author |
Klym, H. Ingram, A. Shpotyuk, O. Hadzaman, I. Solntsev, V. Hotra, O. Popov, A.I. |
author_facet |
Klym, H. Ingram, A. Shpotyuk, O. Hadzaman, I. Solntsev, V. Hotra, O. Popov, A.I. |
author_sort |
Klym, H. |
title |
Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics |
title_short |
Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics |
title_full |
Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics |
title_fullStr |
Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics |
title_full_unstemmed |
Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics |
title_sort |
positron annihilation characterization of free volume in micro- and macro-modified cu₀.₄co₀.₄ni₀.₄mn₁.₈o₄ ceramics |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2016 |
topic_facet |
Low-Temperature Radiation Effects in Wide Gap Materials |
url |
http://dspace.nbuv.gov.ua/handle/123456789/129199 |
citation_txt |
Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics / H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, A.I. Popov // Физика низких температур. — 2016. — Т. 42, № 7. — С. 764-769. — Бібліогр.: 52 назв. — англ. |
series |
Физика низких температур |
work_keys_str_mv |
AT klymh positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics AT ingrama positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics AT shpotyuko positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics AT hadzamani positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics AT solntsevv positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics AT hotrao positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics AT popovai positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics |
first_indexed |
2025-07-09T10:50:08Z |
last_indexed |
2025-07-09T10:50:08Z |
_version_ |
1837166188686213120 |
fulltext |
Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7, pp. 764–769
Positron annihilation characterization of free volume in micro-
and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics
H. Klym1, A. Ingram2, O. Shpotyuk3,4, I. Hadzaman5, V. Solntsev6, O. Hotra7, and A.I. Popov8
1Lviv Polytechnic National University, Ukraine
E-mail: klymha@yahoo.com; halyna.i.klym@lpnu.ua
2Physics Faculty of Opole University of Technology, Poland
3Vlokh Institute of Physical Optics, Lviv, Ukraine
4Institute of Physics of Jan Dlugosz University, Poland
5Drohobych Ivan Franko State Pedagogical University, Ukraine
6V.E. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Kiev, Ukraine
7Lublin University of Technology, Poland
8Institute of Solid State Physics, University of Latvia, Latvia
Received May 4, 2016, published online May 25, 2016
Free volume and pore size distribution size in functional micro and macro-micro-modified
Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics are characterized by positron annihilation lifetime spectroscopy in comparison
with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are interpreted in
terms of model implication positron trapping and ortho-positronium decaying. It is shown that free volume of
positron traps are the same type for macro and micro modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Classic Tao-
Eldrup model in spherical approximation is used to calculation of the size of nanopores smaller than 2 nm using
the ortho-positronium lifetime.
PACS: 78.70.Bj Positron annihilation;
71.60.+z Positron states;
81.05.Mh Cermets, ceramic and refractory composites;
82.30.Gg Positronium chemistry.
Keywords: ceramics, free volume, nanopores, positron trapping, positronium decaying.
1. Introduction
Functional fine-grained temperature-sensitive ceramics
based on transition-metal manganites is one of the typical
representatives of so-called topologically disordered sub-
stances having wide industrial applications [1–3]. Adequate
understanding of correlation between porous and void struc-
tures of such materials is still in focus of scientific and
commercial interests [4,5]. The spatial ordering arrangement
in atomic positions is taken as main determinant for their
functional properties. In bulk ceramics, depending on the
sintering condition (mainly temperature), a significant
shrinkage of the atomic structure occurs, eventually leading
to more or less complex pore topology [6–8]. These pores
along with specific vacancy-type defects within crystalline
grains and grain boundaries represent free-volume (void)
structure of ceramics. Thus, not only grain but also pores
determine main characteristics of the ceramics, influencing,
for example, their transport properties [9,10].
Traditionally, structure of ceramics is probed with
scanning electron microscopy (SEM), porosimetry meth-
ods and etc. with complementary theoretical analysis
[7,8,11–20]. However, the real structure of ceramics
should be studied not only at atomic level, but also at void
level. In this case the positron annihilation lifetime (PAL)
spectroscopy can be used as method which is especially
sensitive to free volumes in solids [21–24].
© H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A.I. Popov, 2016
mailto:klymha@yahoo.com
mailto:halyna.i.klym@lpnu.ua
http://scitation.aip.org/content/institution/AF0012846;jsessionid=2pa183g8omj1u.x-aip-live-02
Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics
It was shown previously, that for spinel ceramics PAL
data are decided by crystallographic features of individual
grains, while structural disturbances due to grain contacts
inside ceramics were a subject for additional complications
[24–29]. This is why the measured positron annihilation
lifetime spectra for functional ceramics can be adequately
explained within combined model involving positron trap-
ping and ortho-positronium (o-Ps) decaying (calculated
within three-component procedure) [25,27–29]. In respect
to this model the component with lifetime τ1 reflects mi-
crostructural specifies of the mail spinel ceramics. The
positron trapping component with lifetime τ2 is attributed
to free volumes near grain boundaries. The longest compo-
nent with lifetime τ3 is responsible to o-Ps annihilation
[28,30] in nanopores of ceramics.
Thus, the main aim of this work is void and porous study
of functional oxide materials taking the example of techno-
logically micro and macro modified Cu0.4Co0.4Ni0.4Mn1.8O4
ceramics using PAL technique in comparison with SEM and
Hg-porosimetry methods.
2. Experimental
Functional Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics macro
and micro modifications was prepared via traditional ce-
ramic technology as was described in greater details else-
where [24,31–38]. Equal molar amounts of initial powders
were mixed in a planetary ball mill for 96 h in an environ-
ment with acetone to obtain mixture. The aqueous solution
of polyvinyl alcohol was used for obtaining of the molding
powder. Bilateral compression was performed in steel
molds. After pressing these samples were sintered in a fur-
nace at maximal temperature (Ts) 1100 °С for 2 h. Accord-
ing to our previous x-ray diffraction investigations, the
micro and macro modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceram-
ics are preferentially of single spinel phase with lattice
parameter of a = 8.365 Å [24,39].
To validate PAL investigations performed, we divided
the Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics into two groups pre-
sumably not affecting lifetime spectra — the
Cu0.4Co0.4Ni0.4Mn1.8O4-micro and Cu0.4Co0.4Ni0.4Mn1.8O4-
macro modified ceramics prepared by preliminary sifting of
powder through fine (with 0.1 mm pores) and more rough
sieve (0.5 mm pores). In both cases, the sizes of intrinsic
pores are too large to change significantly positron annihila-
tion spectra [31].
Structures of grains, grain boundaries and pores were
studied using scanning electron microscopy (LEO 982 mi-
croscope) [26,28,31]. Pore size distribution in
Cu0.4Co0.4Ni0.4Mn1.8O4-micro and Cu0.4Co0.4Ni0.4Mn1.8O4-
macro modified ceramics in the region from 2 to 300 nm was
investigated with Hg-porosimetry (POROSIMETR 4000)
[28,40].
PAL measurements for Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics
were performed using ORTEC spectrometer at temperature
of 20 °C and relative humidity of ~35 % [26,29,41,42]. The
isotope 22Na was used as positron source. The two identical
samples of ceramics were placed in the both sides of the
source. The PAL spectra were treated by LT computer pro-
gram [43]. For each pair of ceramic samples we used three
measured positron annihilation spectra. The best results were
obtained at three-component fitting procedure with parame-
ters of each components (τ1, I1), (τ2, I2) and (τ3, I3). Such
parameters as average positron lifetimes τav, positron lifetime
in defect-free bulk τb and positron trapping rate in defects κd
were calculated using two-state positron trapping model
[20,21,25–32]. The error-bars are ±0.03 ns for lifetimes,
±0.01 arb. units for intensities and ±0.01 ns–1 for positron
trapping rate of defects [41,44].
3. Results and discussion
In respect to SEM investigations, the
Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics contained large grains
(~10 mm) as well as relatively sharp grain boundaries. So-cal-
led “closed” pores have a spherical form and are located
mainly near grain boundaries. As it is obvious from electron
micrographs (Fig. 1), Cu0.4Co0.4Ni0.4Mn1.8O4-micro and
Cu0.4Co0.4Ni0.4Mn1.8O4-macro modified ceramics differ only
by pores. The neatly shaping grains with comparatively tiny
Fig. 1. Scanning electron micrographs of fracture section of
Cu0.4Co0.4Ni0.4Mn1.8O4-macro (a) and Cu0.4Co0.4Ni0.4Mn1.8O4-
micro (b) modified ceramics.
Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7 765
H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A.I. Popov
pores (~1 mm) are characteristic for Cu0.4Co0.4Ni0.4Mn1.8O4-
micro samples, while Cu0.4Co0.4Ni0.4Mn1.8O4-macro ceram-
ics contain similar crystalline grains with larger pores (reach-
ing in size up to ~10 mm) [24].
Open pore size distributions of Cu0.4Co0.4Ni0.4Mn1.8O4-
micro and Cu0.4Co0.4Ni0.4Mn1.8O4-macro modified cera-
mics are shown in Fig. 2. Such distributions cover signifi-
cant amount of charge-transferring nanopores depending on
sintering procedure and small amount of communication
mesopores [40]. In contrast to humidity-sensitive MgAl2O4
ceramics, temperature-sensitive Cu0.4Co0.4Ni0.4Mn1.8O4
ceramics practically do not possess outside-delivering
macropores depending on specific surface area of initial
powder [28]. Thus, Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics pre-
pared at 1100 °C exhibit so-called one-modal pore size dis-
tribution with maximum position near 2 nm and double-
maximum near 2.3 and 5.5 nm for Cu0.4Co0.4Ni0.4Mn1.8O4-
macro and Cu0.4Co0.4Ni0.4Mn1.8O4-micro modified ceram-
ics, respectively (Fig. 2).
Typical PAL spectrum for Cu0.4Co0.4Ni0.4Mn1.8O4 ce-
ramics deconvoluted into three components are shown in
Fig. 3. This spectrum is characterized by peak and region
of fluent decaying of counts in time. The mathematical
decomposition of such curve can be described as a sum of
decreasing exponents with different power-like indexes
reciprocal to positron lifetimes [45].
Let’s try to discuss the results (Table 1) obtained within
positron trapping model by accepting that structural pecu-
liarities of spinel ceramics is associated mainly in the first
PAL component (τ1, I1). The second component (τ2, I2)
corresponds directly to free-volume positron traps (voids in
the form of vacancy-like clusters, agglomerates, etc.) lo-
cated near grain boundaries [21,24]. It means that input of
the first component in the PAL spectra will be, in part, a
determinant of the average electron density distribution
reflected structural compactness of the testes network. The
τ2 lifetime is associated with the size of voids and the in-
tensity I2 is proportional to the amount of voids in the case
of the same defect-free bulk annihilation lifetime [25,29].
The third component (τ3, I3) corresponds to o-Ps annihila-
tion in nanopores. In spite of small value of I3 intensity
(2%), this component cannot be removed without losses in
the quality of the fitting procedure. The similar component
was detected in many porous materials with different struc-
tural type [26,27]. In addition, the third component can de
related with o-Ps “pick-off” annihilation in water absorbed
by materials [27,28]. We don’t exclude the meaning of
other positron annihilation channels in this PAL compo-
nent too, such as para-positroniun (p-Ps) decaying with
character lifetime of 0.125 ns [21]. But their influence is
negligibly small, if the above requirement on close posi-
tron affinity will be more or less kept within a whole posi-
tron-trapping medium [46].
As it was shown in Table 1 and Table 2, micro and macro
structuration of Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics during
preparation does not influence their fitting parameters. As a
result, such positron trapping modes as positron lifetime in
defect-free bulk τb, average positron lifetime τav, positron
Fig. 2. Pore size distributions of Cu0.4Co0.4Ni0.4Mn1.8O4-macro
(a) and Cu0.4Co0.4Ni0.4Mn1.8O4-micro (b) modified ceramics.
Fig. 3. Typical peak-normalized positron lifetime spectra for
studied Cu0.4Co0.4Ni0.4Mn1.8O4 spinel ceramics.
766 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7
Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics
trapping rate of defect κd, size of extended defects, where
positrons are trapped (τ2 – τb), and ratio represents the nature
of these defects (τ2/τb) [21,42] remain unchanged. Obvious-
ly, pores of large examination by SEM and Hg-porosimetry
do not modify significantly the measured positron lifetime
spectra, testifying in a favor of correctness of the performed
measuring and fitting procedures.
As was shown early in [24], the potential positron traps
in functional spinel-type ceramics are tetrahedral and octa-
hedral cation vacancies. The average volume of these tet-
rahedrons Vtetra and octants Vocta can be selected as free-
volume parameters for spinel-structured ceramics.
The radii of tetrahedral and octahedral sites in a spinel
structure can be calculated using lattice parameter a [24]:
,tetra 0
13
4
R u a R = − −
(1)
octa 0
5
8
R u a R = − −
, (2)
where u is oxygen parameter and R0 is oxygen atom with
radius of 1.32 Å.
The oxygen parameter u in oxide spinels is near 0.385
and insignificantly depends on cation type [26,39]. The ra-
dius of tetrahedral vacancies in Cu0.4Co0.4Ni0.4Mn1.8O4
ceramics is 0.64 Å, which gives Vtetra in spherical approxi-
mation ~1.10 Å3. The volume of octahedral vacancies Vocta
is ~1.37 Å3. As it was noted [24], positrons have a preference
to annihilate in octahedral vacancy sites as it follows from
charge density distribution in partially inverted spinel struc-
tures. But the calculated ratio between the first component
inputs in the PAL spectra for previously studied MgAl2O4
ceramics [24,29] and Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics
(0.78) is closer to the ratio between corresponding volumes
of tetrahedral vacancies (0.76) rather than octahedral ones
(0.69). Consequently, in the studied Cu0.4Co0.4Ni0.4Mn1.8O4
ceramics in contrast to nanocrystalline ferrites [21], positron
trapping in tetrahedral vacancies predominates in the first
PAL component. The positron trapping in octahedral vacan-
cies is character to inverse spinel structure.
It is evident that octahedral monovacancies themselves
do not play a decisive role in the second component of PAL
spectra. This component is associated with more extended
agglomerates such as vacancy-like clusters and nanovoids.
They appear, as a rule, near grain boundaries, where ceram-
ics structure is more defective. The characteristic volumes of
these clusters are larger in ceramics with a more stretched
pore structure. In seats where ceramics are composed with
very small grains with divaricated grain boundaries and tiny
pores, the positrons are prepped more effective.
Recently, PAL spectroscopy started to be used as an al-
ternative porosimetry technique to characterize the local free
volumes first of all in both open and closed nanopores
[21,30,47–49]. The PAL method is particularly effective
when Ps is formed. In disordered solids Ps is usually orga-
nized in two ground state (p-Ps and o-Ps) and localized in
the pores and free-volume [47–49]. Usually, quantification
is based on the analysis of o-Ps lifetime (the lifetimes of the
third component τ3 in Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics
corresponds to o-Ps lifetime). The o-Ps “pick-off” annihila-
tion depends on the size of holes and gives additional im-
portant information on the void structure of the materials
[49]. Despite small I3 intensity for Cu0.4Co0.4Ni0.4Mn1.8O4
ceramics, it is possible to estimate the average nanopores
size from o-Ps lifetime in a given material [51]. Assuming
approximately spherical shape of the free volume, the o-Ps
lifetime (τo–Ps) in oxide materials can be related to the aver-
age radius of pores (R) by semiempirical Tao–Eldrup equa-
tion [51,52].
1
,o-Ps
1 22 1 sin 0.007
2
R R
R R R R
− π τ = − + + + ∆ π + ∆
(3)
Table 1. Fitting parameters of LT computer program describing positron annihilation in the studied ceramics
Sample
Fitting parameters Component input
τ1, ns
I1,
arb. units
τ2, ns
I2,
arb. units
τ3, ns
I3,
arb. units
τ1I1, ns τ2I2, ns τ3I3, ns
Cu0.4Co0.4Ni0.4Mn1.804-macro 0.21 0.78 0.37 0.20 1.85 0.02 0.16 0.07 0.04
Cu0.4Co0.4Ni0.4Mn1.804-micro 0.22 0.77 0.38 0.21 1.83 0.02 0.17 0.08 0.04
Table 2. Positron trapping modes in the studied ceramics calculated within two-state positron trapping model and free-volume
characteristics
Sample
Free-volume characteristics Positron trapping modes
Rocta, Å Rtetra, Å Rpore(Tao–Eldrup), nm τav, ns τb, ns κd, ns–1 τ2 – τb, ns τ2/τb
Cu0.4Co0.4Ni0.4Mn1.804-macro
0.69 0.64
0.274 0.24 0.23 0.4 0.14 1.6
Cu0.4Co0.4Ni0.4Mn1.804-micro 0.272 0.25 0.24 0.4 0.14 1.6
Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7 767
H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A.I. Popov
where ∆R is the empirically determined parameter (in the
classical case ∆R ≈ 0.1656 nm), describing effective thick-
ness of the electron layer responsible for the “pick-off”
annihilation of o-Ps in the pore [51,52].
In functional Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics there is
one o-Ps PAL component with small intensity (2%). There-
fore, τ3 lifetime can be related to corresponding pores via
Tao–Eldrup model. The τo-Ps value of around ~1.8 ns (τ3 in
Table 1) corresponds to nanopores with radius (R) distribu-
tion centered near ~0.27 nm. This result are addition to
Hg-porosimetry measurements. In addition, it should be
noted, that porosimetry methods are limited to open
pores, which should have an access to the environment to
be determined. On the other hand, PAL spectroscopy can
probe both open and closed pores in functional oxide ce-
ramics of sizes ranging from atomic scale to several tens
of nanometers [28,50].
5. Conclusions
In conclusion, the usefulness of PAL technique com-
bined with Hg-porosimetry and SEM methods to study of
void-porous structure of functional Cu0.4Co0.4Ni0.4Mn1.8O4
ceramics micro and macro modifications is demonstrated.
The adequate characterization methodology for free-volume
defects in the sintered spinels can be developed in terms of
positron trapping model with small mixing from ortho-
positronium decaying chanell.
The first component on the lifetime spectra shown mi-
crostructure specificity of the spinel ceramics with octahe-
dral and tetrahedral cation vacancies. The extended defects
near grain boundaries (voids) are reflected by the second
component at the level of ~ 0.4 ns. The small third compo-
nent is due to “pick-off” annihilation of o-Ps in the
intergranual nanopores. The observed o-Ps lifetime ~1.8 ns
is related to the nanopores with radius of ~2.7 nm based on
classic Tao–Eldrup equation. The reported data gives addi-
tional information to Hg-porosimetry and SEM results.
Acknowledgements: H. Klym would like to thank the
support via the Project DB/KIBER (No. 0115U000446)
and A.I. Popov thanks Latvian State research program
IMIS2 for a funding.
1. A. Rousset, R. Legros, and A. Lagrange, J. Europ. Ceram.
Soc. 13, 185 (1994).
2. G. Elssner, H. Hover, G. Kiessler, and P.Wellner, Ceramics
and Ceramic Composites: Materialographic Preparation,
Amsterdam-Lausanne-New York-Shannon-Singapore-Tokyo
Elsevier (1999).
3. D. Houivet, J. Bernard, and J.M. Haussonne, J. Europ.
Ceram. Soc. 24, 1237 (2004).
4. N. Setter, J. Europ. Ceram. Soc. 21, 1279 (2001).
5. P. Umadevi and C.L. Nagendra, Sensors and Actuators B 96,
114 (2002).
6. S. Fritsch, J. Sarrias, M. Brieu, J.J. Couderc, J.L. Baudour,
E. Snoeck, and A. Rousset, Solid State Ionics 109, 229
(1998).
7. G. de With and H.J. Glass, J. Europ. Ceramic Soc. 17, 753
(1997).
8. P. Davies and V. Randle, Mater. Science Technol. 17, 615
(2001).
9. D. Gryaznov, J. Fleig, and J. Maier, Solid State Ionics 177,
1583 (2006).
10. D. Gryaznov, J. Fleig, and J. Maier, Solid State Sciences 10,
754 (2008).
11. F. Tang, H. Fudouzi, T. Uchikoshi, and Y. Sakka, J. Europ.
Ceramic Soc. 24, 341 (2004).
12. S. Bellucci, I. Bolesta, I. Karbovnyk, R. Hrytskiv, G. Fafilek,
and A.I. Popov, J. Phys.: Condens. Matter 20, 474211
(2008).
13. S. Bellucci, A.I. Popov, C. Balasubramanian, G. Cinque,
A. Marcelli, I. Karbovnyk, V. Savchyn, and N. Krutyak,
Radiat. Measur. 42, 708 (2007).
14. A. Šutka, M. Millers, N. Döbelin, R. Pärna, M. Vanags,
M. Maiorov, J. Kleperis, T. Käämbre, U. Joost,
E. Nõmmiste, V. Kisand, and M. Knite, Phys. Status Solidi A
212, 796 (2015).
15. A. Voloshynovskii, P. Savchyn, I. Karbovnyk, S. Myagkota,
M. Cestelli Guidi, M. Piccinini, and A.I. Popov, Solid State
Commun. 149, 593 (2009).
16. F. Wang, W.W. Huang, S.Y. Li, A.Q. Lian, X.T. Zhang, and
W. Cao, J. Magn. Magn. Mater. 340, 5 (2013).
17. I. Karbovnyk, S. Piskunov, I. Bolesta, S. Bellucci,
M. Cestelli Guidi, M. Piccinini, E. Spohr, and A.I. Popov,
Europ. Phys. J. B 70, 443 (2009).
18. P. Savchyn, I. Karbovnyk, V. Vistovskyy, A. Voloshinovskii,
V. Pankratov, M. Cestelli Guidi, C. Mirri, O. Myahkota,
A. Riabtseva, N. Mitina, A. Zaichenko, and A.I. Popov,
J. Appl. Phys. 112, 124309 (2012).
19. A. Gatelyte, J. Senvaitiene, D. Jasaitis, A. Beganskiene, and
A. Kareiva, Chemija 22, 19 (2011).
20. R.I. Eglitis and G. Borstel, Phys. Status Solidi A 202, R13
(2005).
21. R. Krause-Rehberg and H.S. Leipner, Positron Annihilation
in Semiconductors. Defect Studies, Springer-Verlag, Berlin-
Heidelberg-New York (1999).
22. Abu Zayed Mohammad Saliqur Rahman, Zhuoxin Li,
Xingzhong Cao, Baoyi Wang, Long Wei, Qiu Xu, and Kozo
Atobe, Nuclear Instrum. Meth. Phys. Res. B 335, 70 (2014).
23. Takuji Suzuki, Hiroki Terabe, Shimpei Iida, Takashi
Yamashita, and Yasuyuki Nagashima, Nuclear Instrum.
Meth. Phys. Res. B 334, 40 (2014).
24. V. Balitska, J. Filipecki, A. Ingram, and O. Shpotyuk, Phys.
Status Solidi C 4, 1317 (2007).
25. H. Klym and A. Ingram, J. Phys.: Confer. Ser. 79, 012014
(2007).
26. H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, and
I. Hadzaman, J. Phys.: Confer. Ser. 289, 012010 (2011).
27. J. Filipecki, A. Ingram, H. Klym, O. Shpotyuk, and
M. Vakiv, J. Phys.: Confer. Ser. 79, 012015 (2007).
768 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7
http://dx.doi.org/10.1016/0955-2219(94)90027-2
http://dx.doi.org/10.1016/0955-2219(94)90027-2
http://dx.doi.org/10.1016/S0955-2219(03)00376-5
http://dx.doi.org/10.1016/S0955-2219(03)00376-5
http://dx.doi.org/10.1016/S0955-2219(01)00217-5
http://dx.doi.org/10.1016/S0924-4247(01)00776-2
http://dx.doi.org/10.1016/S0167-2738(98)00080-0
http://dx.doi.org/10.1016/S0955-2219(96)00181-1
http://dx.doi.org/10.1179/026708301101510384
http://dx.doi.org/10.1016/j.ssi.2006.04.031
http://dx.doi.org/10.1016/j.solidstatesciences.2008.03.030
http://dx.doi.org/10.1016/S0955-2219(03)00223-1
http://dx.doi.org/10.1016/S0955-2219(03)00223-1
http://dx.doi.org/10.1088/0953-8984/20/47/474211
http://dx.doi.org/10.1016/j.radmeas.2007.01.072
http://dx.doi.org/10.1002/pssa.201431681
http://www.sciencedirect.com/science/article/pii/S0038109809000635
http://www.sciencedirect.com/science/article/pii/S0038109809000635
http://www.sciencedirect.com/science/article/pii/S0038109809000635
http://www.sciencedirect.com/science/article/pii/S0038109809000635
http://www.sciencedirect.com/science/article/pii/S0038109809000635
http://www.sciencedirect.com/science/article/pii/S0038109809000635
http://www.sciencedirect.com/science/article/pii/S0038109809000635
http://dx.doi.org/10.1016/j.ssc.2009.01.032
http://dx.doi.org/10.1016/j.ssc.2009.01.032
http://dx.doi.org/10.1016/j.jmmm.2013.03.026
http://link.springer.com/search?facet-author=%22I.+Karbovnyk%22
http://link.springer.com/search?facet-author=%22S.+Piskunov%22
http://link.springer.com/search?facet-author=%22I.+Bolesta%22
http://link.springer.com/search?facet-author=%22S.+Bellucci%22
http://link.springer.com/search?facet-author=%22M.+Cestelli+Guidi%22
http://link.springer.com/search?facet-author=%22M.+Piccinini%22
http://link.springer.com/search?facet-author=%22E.+Spohr%22
http://link.springer.com/search?facet-author=%22A.+I.+Popov%22
http://dx.doi.org/10.1140/epjb/e2009-00242-0
http://dx.doi.org/10.1063/1.4769891
http://dx.doi.org/10.1002/pssa.200409083
http://dx.doi.org/10.1016/j.nimb.2014.06.002
http://dx.doi.org/10.1016/j.nimb.2014.05.004
http://dx.doi.org/10.1016/j.nimb.2014.05.004
http://dx.doi.org/10.1002/pssc.200673737
http://dx.doi.org/10.1002/pssc.200673737
http://dx.doi.org/10.1088/1742-6596/79/1/012014
http://dx.doi.org/10.1088/1742-6596/289/1/012010
http://dx.doi.org/10.1088/1742-6596/79/1/012015
Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics
28. H. Klym, A. Ingram, I. Hadzaman, and O. Shpotyuk, Ceram.
Intern. 40, 8561 (2014).
29. H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, and
I. Hadzaman, IOP Confer. Ser.: Mater. Science Engin. 15,
012044 (2010).
30. Y.C. Jean, P.E. Mallon, and D.M. Schrader, Principles
Application of Positron and Positronium Chemistry, Word
Scientific, Singapore (2003).
31. O. Shpotyuk, V. Balitska, I. Hadzaman, and H. Klym,
J. Alloys Compounds 509, 447 (2011).
32. I. Hadzaman, H. Klym, O. Shpotuyk, and M. Brunner, Acta
Phys. Polonica A 117, 234 (2010).
33. H. Klym, I. Hadzaman, O. Shpotyuk, Q. Fu, W. Luo, and
J. Deng, Solid State Phenom. 200, 156 (2013).
34. M. Vakiv, I. Hadzaman, H. Klym, O. Shpotyuk, and
M. Brunner, J. Phys.: Confer. Ser. 289, 012011 (2011).
35. H. Klym, I. Hadzaman, O. Shpotyuk, and M. Brunner,
Nanoscale Res. Lett. 9, 149 (2014).
36. I. Hadzaman, H. Klym, and O. Shpotyuk, Intern. J.
Nanotechnol. 11, 843 (2014).
37. H. Klym, I. Hadzaman, A. Ingram, and O. Shpotyuk,
Canadian J. Phys. 92, 822 (2014).
38. H. Klym, V. Balitska, O. Shpotyuk, and I. Hadzaman,
Microelectron. Reliab. 54, 2843 (2014).
39. O. Shpotyuk, V. Balitska, M. Brunner, I. Hadzaman, and
H. Klym, Physica B 459, 116 (2015).
40. A. Bondarchuk, O. Shpotyuk, A. Glot, and H. Klym, Revista
Mexicana de Fisica 58, 313 (2012).
41. O. Shpotyuk, A. Ingram, M. Shpotyuk, and J. Filipecki,
Nuclear Instrum. Meth. Phys. Res. B 338, 66 (2014).
42. I. Karbovnyk, I. Bolesta, I. Rovetskii, S. Velgosh, and
H. Klym, Mater. Science-Poland 32, 391 (2014).
43. J. Kansy, Nucl. Instrum. Meth. Phys. Res. A 374, 235 (1996).
44. O. Shpotyuk, L. Calvez, E. Petracovschi, H. Klym, A. Ingram,
and P. Demchenko, J. Alloys Comp. 582, 232 (2014).
45. D.M. Bigg, Polym. Engin. Science 36, 737 (1996).
46. H.E. Hassan, T. Sharshar, M.M. Hessien, and O.M. Hemeda,
Nuclear Instrum. Meth. Phys. Res. B 304, 72 (2013).
47. O.E. Mogensen, Positron Annihilation in Chemistry, Springer,
Berlin (1995).
48. H. Nakanishi, Y.C. Jean, D.M. Schrader, and Y.C. Jean, in:
Positron and Positronium Chemistry, Elsevier, Amsterdam
(1998).
49. G. Dlubek, A. Sen Gupta, J. Pionteck, R. Hassler, R. Krause-
Rehberg, H. Kaspar, and K.H. Lochhaas, Macromolecules
38, 429 (2005).
50. R. Golovchak, Sh. Wang, H. Jain, and A. Ingram, J. Mater.
Res. 27, 2561 (2012).
51. S.J. Tao, J. Chem. Phys. 56, 5499 (1972).
52. M. Eldrup, D. Lightbody, and J.N. Sherwood, Chem. Phys.
63, 51 (1981).
Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7 769
http://dx.doi.org/10.1016/j.ceramint.2014.01.070
http://dx.doi.org/10.1016/j.ceramint.2014.01.070
http://dx.doi.org/10.1088/1757-899X/15/1/012044
http://dx.doi.org/10.1016/j.jallcom.2010.09.054
http://dx.doi.org/10.12693/APhysPolA.117.234
http://dx.doi.org/10.12693/APhysPolA.117.234
http://dx.doi.org/10.4028/www.scientific.net/SSP.200.156
http://dx.doi.org/10.1088/1742-6596/289/1/012011
http://dx.doi.org/10.1186/1556-276X-9-149
http://dx.doi.org/10.1504/IJNT.2014.063793
http://dx.doi.org/10.1504/IJNT.2014.063793
http://dx.doi.org/10.1139/cjp-2013-0597
http://dx.doi.org/10.1016/j.microrel.2014.07.137
http://www.redalyc.org/articulo.oa?id=57023376005
http://www.redalyc.org/articulo.oa?id=57023376005
http://dx.doi.org/10.1016/j.nimb.2014.08.009
http://dx.doi.org/10.2478/s13536-014-0215-z
http://dx.doi.org/10.1016/0168-9002(96)00075-7
http://dx.doi.org/10.1016/0168-9002(96)00075-7
http://dx.doi.org/10.1002/pen.10461
http://dx.doi.org/10.1016/j.nimb.2013.03.053
http://dx.doi.org/10.1021/ma048310f
http://dx.doi.org/10.1557/jmr.2012.252
http://dx.doi.org/10.1557/jmr.2012.252
http://dx.doi.org/10.1063/1.1677067
http://dx.doi.org/10.1016/0301-0104(81)80307-2
1. Introduction
2. Experimental
3. Results and discussion
5. Conclusions
|