Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics

Free volume and pore size distribution size in functional micro and macro-micro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics are characterized by positron annihilation lifetime spectroscopy in comparison with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Klym, H., Ingram, A., Shpotyuk, O., Hadzaman, I., Solntsev, V., Hotra, O., Popov, A.I.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2016
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/129199
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics / H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, A.I. Popov // Физика низких температур. — 2016. — Т. 42, № 7. — С. 764-769. — Бібліогр.: 52 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-129199
record_format dspace
spelling irk-123456789-1291992018-01-17T03:04:19Z Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics Klym, H. Ingram, A. Shpotyuk, O. Hadzaman, I. Solntsev, V. Hotra, O. Popov, A.I. Low-Temperature Radiation Effects in Wide Gap Materials Free volume and pore size distribution size in functional micro and macro-micro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics are characterized by positron annihilation lifetime spectroscopy in comparison with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are interpreted in terms of model implication positron trapping and ortho-positronium decaying. It is shown that free volume of positron traps are the same type for macro and micro modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics. Classic Tao-Eldrup model in spherical approximation is used to calculation of the size of nanopores smaller than 2 nm using the ortho-positronium lifetime. 2016 Article Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics / H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, A.I. Popov // Физика низких температур. — 2016. — Т. 42, № 7. — С. 764-769. — Бібліогр.: 52 назв. — англ. 0132-6414 PACS: 78.70.Bj, 71.60.+z, 81.05.Mh, 82.30.Gg http://dspace.nbuv.gov.ua/handle/123456789/129199 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Low-Temperature Radiation Effects in Wide Gap Materials
Low-Temperature Radiation Effects in Wide Gap Materials
spellingShingle Low-Temperature Radiation Effects in Wide Gap Materials
Low-Temperature Radiation Effects in Wide Gap Materials
Klym, H.
Ingram, A.
Shpotyuk, O.
Hadzaman, I.
Solntsev, V.
Hotra, O.
Popov, A.I.
Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics
Физика низких температур
description Free volume and pore size distribution size in functional micro and macro-micro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics are characterized by positron annihilation lifetime spectroscopy in comparison with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are interpreted in terms of model implication positron trapping and ortho-positronium decaying. It is shown that free volume of positron traps are the same type for macro and micro modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics. Classic Tao-Eldrup model in spherical approximation is used to calculation of the size of nanopores smaller than 2 nm using the ortho-positronium lifetime.
format Article
author Klym, H.
Ingram, A.
Shpotyuk, O.
Hadzaman, I.
Solntsev, V.
Hotra, O.
Popov, A.I.
author_facet Klym, H.
Ingram, A.
Shpotyuk, O.
Hadzaman, I.
Solntsev, V.
Hotra, O.
Popov, A.I.
author_sort Klym, H.
title Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics
title_short Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics
title_full Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics
title_fullStr Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics
title_full_unstemmed Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics
title_sort positron annihilation characterization of free volume in micro- and macro-modified cu₀.₄co₀.₄ni₀.₄mn₁.₈o₄ ceramics
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2016
topic_facet Low-Temperature Radiation Effects in Wide Gap Materials
url http://dspace.nbuv.gov.ua/handle/123456789/129199
citation_txt Positron annihilation characterization of free volume in micro- and macro-modified Cu₀.₄Co₀.₄Ni₀.₄Mn₁.₈O₄ ceramics / H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, A.I. Popov // Физика низких температур. — 2016. — Т. 42, № 7. — С. 764-769. — Бібліогр.: 52 назв. — англ.
series Физика низких температур
work_keys_str_mv AT klymh positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics
AT ingrama positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics
AT shpotyuko positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics
AT hadzamani positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics
AT solntsevv positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics
AT hotrao positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics
AT popovai positronannihilationcharacterizationoffreevolumeinmicroandmacromodifiedcu04co04ni04mn18o4ceramics
first_indexed 2025-07-09T10:50:08Z
last_indexed 2025-07-09T10:50:08Z
_version_ 1837166188686213120
fulltext Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7, pp. 764–769 Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics H. Klym1, A. Ingram2, O. Shpotyuk3,4, I. Hadzaman5, V. Solntsev6, O. Hotra7, and A.I. Popov8 1Lviv Polytechnic National University, Ukraine E-mail: klymha@yahoo.com; halyna.i.klym@lpnu.ua 2Physics Faculty of Opole University of Technology, Poland 3Vlokh Institute of Physical Optics, Lviv, Ukraine 4Institute of Physics of Jan Dlugosz University, Poland 5Drohobych Ivan Franko State Pedagogical University, Ukraine 6V.E. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Kiev, Ukraine 7Lublin University of Technology, Poland 8Institute of Solid State Physics, University of Latvia, Latvia Received May 4, 2016, published online May 25, 2016 Free volume and pore size distribution size in functional micro and macro-micro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics are characterized by positron annihilation lifetime spectroscopy in comparison with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are interpreted in terms of model implication positron trapping and ortho-positronium decaying. It is shown that free volume of positron traps are the same type for macro and micro modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Classic Tao- Eldrup model in spherical approximation is used to calculation of the size of nanopores smaller than 2 nm using the ortho-positronium lifetime. PACS: 78.70.Bj Positron annihilation; 71.60.+z Positron states; 81.05.Mh Cermets, ceramic and refractory composites; 82.30.Gg Positronium chemistry. Keywords: ceramics, free volume, nanopores, positron trapping, positronium decaying. 1. Introduction Functional fine-grained temperature-sensitive ceramics based on transition-metal manganites is one of the typical representatives of so-called topologically disordered sub- stances having wide industrial applications [1–3]. Adequate understanding of correlation between porous and void struc- tures of such materials is still in focus of scientific and commercial interests [4,5]. The spatial ordering arrangement in atomic positions is taken as main determinant for their functional properties. In bulk ceramics, depending on the sintering condition (mainly temperature), a significant shrinkage of the atomic structure occurs, eventually leading to more or less complex pore topology [6–8]. These pores along with specific vacancy-type defects within crystalline grains and grain boundaries represent free-volume (void) structure of ceramics. Thus, not only grain but also pores determine main characteristics of the ceramics, influencing, for example, their transport properties [9,10]. Traditionally, structure of ceramics is probed with scanning electron microscopy (SEM), porosimetry meth- ods and etc. with complementary theoretical analysis [7,8,11–20]. However, the real structure of ceramics should be studied not only at atomic level, but also at void level. In this case the positron annihilation lifetime (PAL) spectroscopy can be used as method which is especially sensitive to free volumes in solids [21–24]. © H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A.I. Popov, 2016 mailto:klymha@yahoo.com mailto:halyna.i.klym@lpnu.ua http://scitation.aip.org/content/institution/AF0012846;jsessionid=2pa183g8omj1u.x-aip-live-02 Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics It was shown previously, that for spinel ceramics PAL data are decided by crystallographic features of individual grains, while structural disturbances due to grain contacts inside ceramics were a subject for additional complications [24–29]. This is why the measured positron annihilation lifetime spectra for functional ceramics can be adequately explained within combined model involving positron trap- ping and ortho-positronium (o-Ps) decaying (calculated within three-component procedure) [25,27–29]. In respect to this model the component with lifetime τ1 reflects mi- crostructural specifies of the mail spinel ceramics. The positron trapping component with lifetime τ2 is attributed to free volumes near grain boundaries. The longest compo- nent with lifetime τ3 is responsible to o-Ps annihilation [28,30] in nanopores of ceramics. Thus, the main aim of this work is void and porous study of functional oxide materials taking the example of techno- logically micro and macro modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics using PAL technique in comparison with SEM and Hg-porosimetry methods. 2. Experimental Functional Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics macro and micro modifications was prepared via traditional ce- ramic technology as was described in greater details else- where [24,31–38]. Equal molar amounts of initial powders were mixed in a planetary ball mill for 96 h in an environ- ment with acetone to obtain mixture. The aqueous solution of polyvinyl alcohol was used for obtaining of the molding powder. Bilateral compression was performed in steel molds. After pressing these samples were sintered in a fur- nace at maximal temperature (Ts) 1100 °С for 2 h. Accord- ing to our previous x-ray diffraction investigations, the micro and macro modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceram- ics are preferentially of single spinel phase with lattice parameter of a = 8.365 Å [24,39]. To validate PAL investigations performed, we divided the Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics into two groups pre- sumably not affecting lifetime spectra — the Cu0.4Co0.4Ni0.4Mn1.8O4-micro and Cu0.4Co0.4Ni0.4Mn1.8O4- macro modified ceramics prepared by preliminary sifting of powder through fine (with 0.1 mm pores) and more rough sieve (0.5 mm pores). In both cases, the sizes of intrinsic pores are too large to change significantly positron annihila- tion spectra [31]. Structures of grains, grain boundaries and pores were studied using scanning electron microscopy (LEO 982 mi- croscope) [26,28,31]. Pore size distribution in Cu0.4Co0.4Ni0.4Mn1.8O4-micro and Cu0.4Co0.4Ni0.4Mn1.8O4- macro modified ceramics in the region from 2 to 300 nm was investigated with Hg-porosimetry (POROSIMETR 4000) [28,40]. PAL measurements for Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics were performed using ORTEC spectrometer at temperature of 20 °C and relative humidity of ~35 % [26,29,41,42]. The isotope 22Na was used as positron source. The two identical samples of ceramics were placed in the both sides of the source. The PAL spectra were treated by LT computer pro- gram [43]. For each pair of ceramic samples we used three measured positron annihilation spectra. The best results were obtained at three-component fitting procedure with parame- ters of each components (τ1, I1), (τ2, I2) and (τ3, I3). Such parameters as average positron lifetimes τav, positron lifetime in defect-free bulk τb and positron trapping rate in defects κd were calculated using two-state positron trapping model [20,21,25–32]. The error-bars are ±0.03 ns for lifetimes, ±0.01 arb. units for intensities and ±0.01 ns–1 for positron trapping rate of defects [41,44]. 3. Results and discussion In respect to SEM investigations, the Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics contained large grains (~10 mm) as well as relatively sharp grain boundaries. So-cal- led “closed” pores have a spherical form and are located mainly near grain boundaries. As it is obvious from electron micrographs (Fig. 1), Cu0.4Co0.4Ni0.4Mn1.8O4-micro and Cu0.4Co0.4Ni0.4Mn1.8O4-macro modified ceramics differ only by pores. The neatly shaping grains with comparatively tiny Fig. 1. Scanning electron micrographs of fracture section of Cu0.4Co0.4Ni0.4Mn1.8O4-macro (a) and Cu0.4Co0.4Ni0.4Mn1.8O4- micro (b) modified ceramics. Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7 765 H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A.I. Popov pores (~1 mm) are characteristic for Cu0.4Co0.4Ni0.4Mn1.8O4- micro samples, while Cu0.4Co0.4Ni0.4Mn1.8O4-macro ceram- ics contain similar crystalline grains with larger pores (reach- ing in size up to ~10 mm) [24]. Open pore size distributions of Cu0.4Co0.4Ni0.4Mn1.8O4- micro and Cu0.4Co0.4Ni0.4Mn1.8O4-macro modified cera- mics are shown in Fig. 2. Such distributions cover signifi- cant amount of charge-transferring nanopores depending on sintering procedure and small amount of communication mesopores [40]. In contrast to humidity-sensitive MgAl2O4 ceramics, temperature-sensitive Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics practically do not possess outside-delivering macropores depending on specific surface area of initial powder [28]. Thus, Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics pre- pared at 1100 °C exhibit so-called one-modal pore size dis- tribution with maximum position near 2 nm and double- maximum near 2.3 and 5.5 nm for Cu0.4Co0.4Ni0.4Mn1.8O4- macro and Cu0.4Co0.4Ni0.4Mn1.8O4-micro modified ceram- ics, respectively (Fig. 2). Typical PAL spectrum for Cu0.4Co0.4Ni0.4Mn1.8O4 ce- ramics deconvoluted into three components are shown in Fig. 3. This spectrum is characterized by peak and region of fluent decaying of counts in time. The mathematical decomposition of such curve can be described as a sum of decreasing exponents with different power-like indexes reciprocal to positron lifetimes [45]. Let’s try to discuss the results (Table 1) obtained within positron trapping model by accepting that structural pecu- liarities of spinel ceramics is associated mainly in the first PAL component (τ1, I1). The second component (τ2, I2) corresponds directly to free-volume positron traps (voids in the form of vacancy-like clusters, agglomerates, etc.) lo- cated near grain boundaries [21,24]. It means that input of the first component in the PAL spectra will be, in part, a determinant of the average electron density distribution reflected structural compactness of the testes network. The τ2 lifetime is associated with the size of voids and the in- tensity I2 is proportional to the amount of voids in the case of the same defect-free bulk annihilation lifetime [25,29]. The third component (τ3, I3) corresponds to o-Ps annihila- tion in nanopores. In spite of small value of I3 intensity (2%), this component cannot be removed without losses in the quality of the fitting procedure. The similar component was detected in many porous materials with different struc- tural type [26,27]. In addition, the third component can de related with o-Ps “pick-off” annihilation in water absorbed by materials [27,28]. We don’t exclude the meaning of other positron annihilation channels in this PAL compo- nent too, such as para-positroniun (p-Ps) decaying with character lifetime of 0.125 ns [21]. But their influence is negligibly small, if the above requirement on close posi- tron affinity will be more or less kept within a whole posi- tron-trapping medium [46]. As it was shown in Table 1 and Table 2, micro and macro structuration of Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics during preparation does not influence their fitting parameters. As a result, such positron trapping modes as positron lifetime in defect-free bulk τb, average positron lifetime τav, positron Fig. 2. Pore size distributions of Cu0.4Co0.4Ni0.4Mn1.8O4-macro (a) and Cu0.4Co0.4Ni0.4Mn1.8O4-micro (b) modified ceramics. Fig. 3. Typical peak-normalized positron lifetime spectra for studied Cu0.4Co0.4Ni0.4Mn1.8O4 spinel ceramics. 766 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7 Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics trapping rate of defect κd, size of extended defects, where positrons are trapped (τ2 – τb), and ratio represents the nature of these defects (τ2/τb) [21,42] remain unchanged. Obvious- ly, pores of large examination by SEM and Hg-porosimetry do not modify significantly the measured positron lifetime spectra, testifying in a favor of correctness of the performed measuring and fitting procedures. As was shown early in [24], the potential positron traps in functional spinel-type ceramics are tetrahedral and octa- hedral cation vacancies. The average volume of these tet- rahedrons Vtetra and octants Vocta can be selected as free- volume parameters for spinel-structured ceramics. The radii of tetrahedral and octahedral sites in a spinel structure can be calculated using lattice parameter a [24]: ,tetra 0 13 4 R u a R = − −   (1) octa 0 5 8 R u a R = − −   , (2) where u is oxygen parameter and R0 is oxygen atom with radius of 1.32 Å. The oxygen parameter u in oxide spinels is near 0.385 and insignificantly depends on cation type [26,39]. The ra- dius of tetrahedral vacancies in Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics is 0.64 Å, which gives Vtetra in spherical approxi- mation ~1.10 Å3. The volume of octahedral vacancies Vocta is ~1.37 Å3. As it was noted [24], positrons have a preference to annihilate in octahedral vacancy sites as it follows from charge density distribution in partially inverted spinel struc- tures. But the calculated ratio between the first component inputs in the PAL spectra for previously studied MgAl2O4 ceramics [24,29] and Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics (0.78) is closer to the ratio between corresponding volumes of tetrahedral vacancies (0.76) rather than octahedral ones (0.69). Consequently, in the studied Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics in contrast to nanocrystalline ferrites [21], positron trapping in tetrahedral vacancies predominates in the first PAL component. The positron trapping in octahedral vacan- cies is character to inverse spinel structure. It is evident that octahedral monovacancies themselves do not play a decisive role in the second component of PAL spectra. This component is associated with more extended agglomerates such as vacancy-like clusters and nanovoids. They appear, as a rule, near grain boundaries, where ceram- ics structure is more defective. The characteristic volumes of these clusters are larger in ceramics with a more stretched pore structure. In seats where ceramics are composed with very small grains with divaricated grain boundaries and tiny pores, the positrons are prepped more effective. Recently, PAL spectroscopy started to be used as an al- ternative porosimetry technique to characterize the local free volumes first of all in both open and closed nanopores [21,30,47–49]. The PAL method is particularly effective when Ps is formed. In disordered solids Ps is usually orga- nized in two ground state (p-Ps and o-Ps) and localized in the pores and free-volume [47–49]. Usually, quantification is based on the analysis of o-Ps lifetime (the lifetimes of the third component τ3 in Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics corresponds to o-Ps lifetime). The o-Ps “pick-off” annihila- tion depends on the size of holes and gives additional im- portant information on the void structure of the materials [49]. Despite small I3 intensity for Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics, it is possible to estimate the average nanopores size from o-Ps lifetime in a given material [51]. Assuming approximately spherical shape of the free volume, the o-Ps lifetime (τo–Ps) in oxide materials can be related to the aver- age radius of pores (R) by semiempirical Tao–Eldrup equa- tion [51,52]. 1 ,o-Ps 1 22 1 sin 0.007 2 R R R R R R −  π  τ = − + +     + ∆ π + ∆  (3) Table 1. Fitting parameters of LT computer program describing positron annihilation in the studied ceramics Sample Fitting parameters Component input τ1, ns I1, arb. units τ2, ns I2, arb. units τ3, ns I3, arb. units τ1I1, ns τ2I2, ns τ3I3, ns Cu0.4Co0.4Ni0.4Mn1.804-macro 0.21 0.78 0.37 0.20 1.85 0.02 0.16 0.07 0.04 Cu0.4Co0.4Ni0.4Mn1.804-micro 0.22 0.77 0.38 0.21 1.83 0.02 0.17 0.08 0.04 Table 2. Positron trapping modes in the studied ceramics calculated within two-state positron trapping model and free-volume characteristics Sample Free-volume characteristics Positron trapping modes Rocta, Å Rtetra, Å Rpore(Tao–Eldrup), nm τav, ns τb, ns κd, ns–1 τ2 – τb, ns τ2/τb Cu0.4Co0.4Ni0.4Mn1.804-macro 0.69 0.64 0.274 0.24 0.23 0.4 0.14 1.6 Cu0.4Co0.4Ni0.4Mn1.804-micro 0.272 0.25 0.24 0.4 0.14 1.6 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7 767 H. Klym, A. Ingram, O. Shpotyuk, I. Hadzaman, V. Solntsev, O. Hotra, and A.I. Popov where ∆R is the empirically determined parameter (in the classical case ∆R ≈ 0.1656 nm), describing effective thick- ness of the electron layer responsible for the “pick-off” annihilation of o-Ps in the pore [51,52]. In functional Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics there is one o-Ps PAL component with small intensity (2%). There- fore, τ3 lifetime can be related to corresponding pores via Tao–Eldrup model. The τo-Ps value of around ~1.8 ns (τ3 in Table 1) corresponds to nanopores with radius (R) distribu- tion centered near ~0.27 nm. This result are addition to Hg-porosimetry measurements. In addition, it should be noted, that porosimetry methods are limited to open pores, which should have an access to the environment to be determined. On the other hand, PAL spectroscopy can probe both open and closed pores in functional oxide ce- ramics of sizes ranging from atomic scale to several tens of nanometers [28,50]. 5. Conclusions In conclusion, the usefulness of PAL technique com- bined with Hg-porosimetry and SEM methods to study of void-porous structure of functional Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics micro and macro modifications is demonstrated. The adequate characterization methodology for free-volume defects in the sintered spinels can be developed in terms of positron trapping model with small mixing from ortho- positronium decaying chanell. The first component on the lifetime spectra shown mi- crostructure specificity of the spinel ceramics with octahe- dral and tetrahedral cation vacancies. The extended defects near grain boundaries (voids) are reflected by the second component at the level of ~ 0.4 ns. The small third compo- nent is due to “pick-off” annihilation of o-Ps in the intergranual nanopores. The observed o-Ps lifetime ~1.8 ns is related to the nanopores with radius of ~2.7 nm based on classic Tao–Eldrup equation. The reported data gives addi- tional information to Hg-porosimetry and SEM results. Acknowledgements: H. Klym would like to thank the support via the Project DB/KIBER (No. 0115U000446) and A.I. Popov thanks Latvian State research program IMIS2 for a funding. 1. A. Rousset, R. Legros, and A. Lagrange, J. Europ. Ceram. Soc. 13, 185 (1994). 2. G. Elssner, H. Hover, G. Kiessler, and P.Wellner, Ceramics and Ceramic Composites: Materialographic Preparation, Amsterdam-Lausanne-New York-Shannon-Singapore-Tokyo Elsevier (1999). 3. D. Houivet, J. Bernard, and J.M. Haussonne, J. Europ. Ceram. Soc. 24, 1237 (2004). 4. N. Setter, J. Europ. Ceram. Soc. 21, 1279 (2001). 5. P. Umadevi and C.L. Nagendra, Sensors and Actuators B 96, 114 (2002). 6. S. Fritsch, J. Sarrias, M. Brieu, J.J. Couderc, J.L. Baudour, E. Snoeck, and A. Rousset, Solid State Ionics 109, 229 (1998). 7. G. de With and H.J. Glass, J. Europ. Ceramic Soc. 17, 753 (1997). 8. P. Davies and V. Randle, Mater. Science Technol. 17, 615 (2001). 9. D. Gryaznov, J. Fleig, and J. Maier, Solid State Ionics 177, 1583 (2006). 10. D. Gryaznov, J. Fleig, and J. Maier, Solid State Sciences 10, 754 (2008). 11. F. Tang, H. Fudouzi, T. Uchikoshi, and Y. Sakka, J. Europ. Ceramic Soc. 24, 341 (2004). 12. S. Bellucci, I. Bolesta, I. Karbovnyk, R. Hrytskiv, G. Fafilek, and A.I. Popov, J. Phys.: Condens. Matter 20, 474211 (2008). 13. S. Bellucci, A.I. Popov, C. Balasubramanian, G. Cinque, A. Marcelli, I. Karbovnyk, V. Savchyn, and N. Krutyak, Radiat. Measur. 42, 708 (2007). 14. A. Šutka, M. Millers, N. Döbelin, R. Pärna, M. Vanags, M. Maiorov, J. Kleperis, T. Käämbre, U. Joost, E. Nõmmiste, V. Kisand, and M. Knite, Phys. Status Solidi A 212, 796 (2015). 15. A. Voloshynovskii, P. Savchyn, I. Karbovnyk, S. Myagkota, M. Cestelli Guidi, M. Piccinini, and A.I. Popov, Solid State Commun. 149, 593 (2009). 16. F. Wang, W.W. Huang, S.Y. Li, A.Q. Lian, X.T. Zhang, and W. Cao, J. Magn. Magn. Mater. 340, 5 (2013). 17. I. Karbovnyk, S. Piskunov, I. Bolesta, S. Bellucci, M. Cestelli Guidi, M. Piccinini, E. Spohr, and A.I. Popov, Europ. Phys. J. B 70, 443 (2009). 18. P. Savchyn, I. Karbovnyk, V. Vistovskyy, A. Voloshinovskii, V. Pankratov, M. Cestelli Guidi, C. Mirri, O. Myahkota, A. Riabtseva, N. Mitina, A. Zaichenko, and A.I. Popov, J. Appl. Phys. 112, 124309 (2012). 19. A. Gatelyte, J. Senvaitiene, D. Jasaitis, A. Beganskiene, and A. Kareiva, Chemija 22, 19 (2011). 20. R.I. Eglitis and G. Borstel, Phys. Status Solidi A 202, R13 (2005). 21. R. Krause-Rehberg and H.S. Leipner, Positron Annihilation in Semiconductors. Defect Studies, Springer-Verlag, Berlin- Heidelberg-New York (1999). 22. Abu Zayed Mohammad Saliqur Rahman, Zhuoxin Li, Xingzhong Cao, Baoyi Wang, Long Wei, Qiu Xu, and Kozo Atobe, Nuclear Instrum. Meth. Phys. Res. B 335, 70 (2014). 23. Takuji Suzuki, Hiroki Terabe, Shimpei Iida, Takashi Yamashita, and Yasuyuki Nagashima, Nuclear Instrum. Meth. Phys. Res. B 334, 40 (2014). 24. V. Balitska, J. Filipecki, A. Ingram, and O. Shpotyuk, Phys. Status Solidi C 4, 1317 (2007). 25. H. Klym and A. Ingram, J. Phys.: Confer. Ser. 79, 012014 (2007). 26. H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, and I. Hadzaman, J. Phys.: Confer. Ser. 289, 012010 (2011). 27. J. Filipecki, A. Ingram, H. Klym, O. Shpotyuk, and M. Vakiv, J. Phys.: Confer. Ser. 79, 012015 (2007). 768 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7 http://dx.doi.org/10.1016/0955-2219(94)90027-2 http://dx.doi.org/10.1016/0955-2219(94)90027-2 http://dx.doi.org/10.1016/S0955-2219(03)00376-5 http://dx.doi.org/10.1016/S0955-2219(03)00376-5 http://dx.doi.org/10.1016/S0955-2219(01)00217-5 http://dx.doi.org/10.1016/S0924-4247(01)00776-2 http://dx.doi.org/10.1016/S0167-2738(98)00080-0 http://dx.doi.org/10.1016/S0955-2219(96)00181-1 http://dx.doi.org/10.1179/026708301101510384 http://dx.doi.org/10.1016/j.ssi.2006.04.031 http://dx.doi.org/10.1016/j.solidstatesciences.2008.03.030 http://dx.doi.org/10.1016/S0955-2219(03)00223-1 http://dx.doi.org/10.1016/S0955-2219(03)00223-1 http://dx.doi.org/10.1088/0953-8984/20/47/474211 http://dx.doi.org/10.1016/j.radmeas.2007.01.072 http://dx.doi.org/10.1002/pssa.201431681 http://www.sciencedirect.com/science/article/pii/S0038109809000635 http://www.sciencedirect.com/science/article/pii/S0038109809000635 http://www.sciencedirect.com/science/article/pii/S0038109809000635 http://www.sciencedirect.com/science/article/pii/S0038109809000635 http://www.sciencedirect.com/science/article/pii/S0038109809000635 http://www.sciencedirect.com/science/article/pii/S0038109809000635 http://www.sciencedirect.com/science/article/pii/S0038109809000635 http://dx.doi.org/10.1016/j.ssc.2009.01.032 http://dx.doi.org/10.1016/j.ssc.2009.01.032 http://dx.doi.org/10.1016/j.jmmm.2013.03.026 http://link.springer.com/search?facet-author=%22I.+Karbovnyk%22 http://link.springer.com/search?facet-author=%22S.+Piskunov%22 http://link.springer.com/search?facet-author=%22I.+Bolesta%22 http://link.springer.com/search?facet-author=%22S.+Bellucci%22 http://link.springer.com/search?facet-author=%22M.+Cestelli+Guidi%22 http://link.springer.com/search?facet-author=%22M.+Piccinini%22 http://link.springer.com/search?facet-author=%22E.+Spohr%22 http://link.springer.com/search?facet-author=%22A.+I.+Popov%22 http://dx.doi.org/10.1140/epjb/e2009-00242-0 http://dx.doi.org/10.1063/1.4769891 http://dx.doi.org/10.1002/pssa.200409083 http://dx.doi.org/10.1016/j.nimb.2014.06.002 http://dx.doi.org/10.1016/j.nimb.2014.05.004 http://dx.doi.org/10.1016/j.nimb.2014.05.004 http://dx.doi.org/10.1002/pssc.200673737 http://dx.doi.org/10.1002/pssc.200673737 http://dx.doi.org/10.1088/1742-6596/79/1/012014 http://dx.doi.org/10.1088/1742-6596/289/1/012010 http://dx.doi.org/10.1088/1742-6596/79/1/012015 Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics 28. H. Klym, A. Ingram, I. Hadzaman, and O. Shpotyuk, Ceram. Intern. 40, 8561 (2014). 29. H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, and I. Hadzaman, IOP Confer. Ser.: Mater. Science Engin. 15, 012044 (2010). 30. Y.C. Jean, P.E. Mallon, and D.M. Schrader, Principles Application of Positron and Positronium Chemistry, Word Scientific, Singapore (2003). 31. O. Shpotyuk, V. Balitska, I. Hadzaman, and H. Klym, J. Alloys Compounds 509, 447 (2011). 32. I. Hadzaman, H. Klym, O. Shpotuyk, and M. Brunner, Acta Phys. Polonica A 117, 234 (2010). 33. H. Klym, I. Hadzaman, O. Shpotyuk, Q. Fu, W. Luo, and J. Deng, Solid State Phenom. 200, 156 (2013). 34. M. Vakiv, I. Hadzaman, H. Klym, O. Shpotyuk, and M. Brunner, J. Phys.: Confer. Ser. 289, 012011 (2011). 35. H. Klym, I. Hadzaman, O. Shpotyuk, and M. Brunner, Nanoscale Res. Lett. 9, 149 (2014). 36. I. Hadzaman, H. Klym, and O. Shpotyuk, Intern. J. Nanotechnol. 11, 843 (2014). 37. H. Klym, I. Hadzaman, A. Ingram, and O. Shpotyuk, Canadian J. Phys. 92, 822 (2014). 38. H. Klym, V. Balitska, O. Shpotyuk, and I. Hadzaman, Microelectron. Reliab. 54, 2843 (2014). 39. O. Shpotyuk, V. Balitska, M. Brunner, I. Hadzaman, and H. Klym, Physica B 459, 116 (2015). 40. A. Bondarchuk, O. Shpotyuk, A. Glot, and H. Klym, Revista Mexicana de Fisica 58, 313 (2012). 41. O. Shpotyuk, A. Ingram, M. Shpotyuk, and J. Filipecki, Nuclear Instrum. Meth. Phys. Res. B 338, 66 (2014). 42. I. Karbovnyk, I. Bolesta, I. Rovetskii, S. Velgosh, and H. Klym, Mater. Science-Poland 32, 391 (2014). 43. J. Kansy, Nucl. Instrum. Meth. Phys. Res. A 374, 235 (1996). 44. O. Shpotyuk, L. Calvez, E. Petracovschi, H. Klym, A. Ingram, and P. Demchenko, J. Alloys Comp. 582, 232 (2014). 45. D.M. Bigg, Polym. Engin. Science 36, 737 (1996). 46. H.E. Hassan, T. Sharshar, M.M. Hessien, and O.M. Hemeda, Nuclear Instrum. Meth. Phys. Res. B 304, 72 (2013). 47. O.E. Mogensen, Positron Annihilation in Chemistry, Springer, Berlin (1995). 48. H. Nakanishi, Y.C. Jean, D.M. Schrader, and Y.C. Jean, in: Positron and Positronium Chemistry, Elsevier, Amsterdam (1998). 49. G. Dlubek, A. Sen Gupta, J. Pionteck, R. Hassler, R. Krause- Rehberg, H. Kaspar, and K.H. Lochhaas, Macromolecules 38, 429 (2005). 50. R. Golovchak, Sh. Wang, H. Jain, and A. Ingram, J. Mater. Res. 27, 2561 (2012). 51. S.J. Tao, J. Chem. Phys. 56, 5499 (1972). 52. M. Eldrup, D. Lightbody, and J.N. Sherwood, Chem. Phys. 63, 51 (1981). Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 7 769 http://dx.doi.org/10.1016/j.ceramint.2014.01.070 http://dx.doi.org/10.1016/j.ceramint.2014.01.070 http://dx.doi.org/10.1088/1757-899X/15/1/012044 http://dx.doi.org/10.1016/j.jallcom.2010.09.054 http://dx.doi.org/10.12693/APhysPolA.117.234 http://dx.doi.org/10.12693/APhysPolA.117.234 http://dx.doi.org/10.4028/www.scientific.net/SSP.200.156 http://dx.doi.org/10.1088/1742-6596/289/1/012011 http://dx.doi.org/10.1186/1556-276X-9-149 http://dx.doi.org/10.1504/IJNT.2014.063793 http://dx.doi.org/10.1504/IJNT.2014.063793 http://dx.doi.org/10.1139/cjp-2013-0597 http://dx.doi.org/10.1016/j.microrel.2014.07.137 http://www.redalyc.org/articulo.oa?id=57023376005 http://www.redalyc.org/articulo.oa?id=57023376005 http://dx.doi.org/10.1016/j.nimb.2014.08.009 http://dx.doi.org/10.2478/s13536-014-0215-z http://dx.doi.org/10.1016/0168-9002(96)00075-7 http://dx.doi.org/10.1016/0168-9002(96)00075-7 http://dx.doi.org/10.1002/pen.10461 http://dx.doi.org/10.1016/j.nimb.2013.03.053 http://dx.doi.org/10.1021/ma048310f http://dx.doi.org/10.1557/jmr.2012.252 http://dx.doi.org/10.1557/jmr.2012.252 http://dx.doi.org/10.1063/1.1677067 http://dx.doi.org/10.1016/0301-0104(81)80307-2 1. Introduction 2. Experimental 3. Results and discussion 5. Conclusions