Плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость

Изучается рассеяние поверхностных ТМ поляризованных плазмон-поляритонных волн (ППВ) конечным участком плоской границы металл–вакуум со случайно флуктуирующим импедансом. Анализируется решение интегрального уравнения, связывающего рассеянное поле с полем падающей ППВ, справедливое для произвольной...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Тарасов, Ю.В., Усатенко, О.В., Якушев, Д.А.
Формат: Стаття
Мова:Russian
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2016
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/129284
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость / Ю.В. Тарасов, О.В. Усатенко, Д.А. Якушев // Физика низких температур. — 2016. — Т. 42, № 8. — С. 870-886. — Бібліогр.: 36 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-129284
record_format dspace
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic К 75-летию открытия теплового сопротивления Капицы
К 75-летию открытия теплового сопротивления Капицы
spellingShingle К 75-летию открытия теплового сопротивления Капицы
К 75-летию открытия теплового сопротивления Капицы
Тарасов, Ю.В.
Усатенко, О.В.
Якушев, Д.А.
Плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость
Физика низких температур
description Изучается рассеяние поверхностных ТМ поляризованных плазмон-поляритонных волн (ППВ) конечным участком плоской границы металл–вакуум со случайно флуктуирующим импедансом. Анализируется решение интегрального уравнения, связывающего рассеянное поле с полем падающей ППВ, справедливое для произвольной интенсивности рассеяния и произвольных диссипативных свойств проводящей среды. В качестве меры рассеяния ППВ используется гильбертова норма рассеивающего интегрального оператора. Показано, что интенсивность рассеяния определяется не только параметрами флуктуирующего импеданса (дисперсия, корреляционный радиус, длина участка неоднородности), но также критически зависит от величины проводимости металла. При малой норме интегрального оператора ППВ рассеивается в основном в вакуум, теряя энергию на возбуждение над проводящей поверхностью квазиизотропных волн нортоновского типа. Интенсивность рассеянного поля выражается в терминах парной корреляционной функции импеданса, зависимость которой от волновых чисел налетающей и рассеянных волн демонстрирует возможность наблюдать при рассеянии ППВ на случайных флуктуациях импеданса явление, аналогичное вудовским аномалиям рассеяния волн на периодических решетках. При сильном рассеянии, когда норма рассеивающего оператора становится большой по сравнению с единицей, излучение в объем подавляется, и в пределе ППВ зеркально отражается от неоднородного участка поверхности. Поэтому в модели бездиссипативной проводящей среды поверхностный поляритон неустойчив по отношению к сколь угодно малым флуктуациям поляризуемости проводника. Зеркализация рассеяния при сильных флуктуациях импеданса интерпретируется в терминах локализации Андерсона.
format Article
author Тарасов, Ю.В.
Усатенко, О.В.
Якушев, Д.А.
author_facet Тарасов, Ю.В.
Усатенко, О.В.
Якушев, Д.А.
author_sort Тарасов, Ю.В.
title Плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость
title_short Плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость
title_full Плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость
title_fullStr Плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость
title_full_unstemmed Плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость
title_sort плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2016
topic_facet К 75-летию открытия теплового сопротивления Капицы
url http://dspace.nbuv.gov.ua/handle/123456789/129284
citation_txt Плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость / Ю.В. Тарасов, О.В. Усатенко, Д.А. Якушев // Физика низких температур. — 2016. — Т. 42, № 8. — С. 870-886. — Бібліогр.: 36 назв. — рос.
series Физика низких температур
work_keys_str_mv AT tarasovûv plazmonpolâritonynagranicesfluktuiruûŝimimpedansomrasseânielokalizaciâustojčivostʹ
AT usatenkoov plazmonpolâritonynagranicesfluktuiruûŝimimpedansomrasseânielokalizaciâustojčivostʹ
AT âkuševda plazmonpolâritonynagranicesfluktuiruûŝimimpedansomrasseânielokalizaciâustojčivostʹ
first_indexed 2023-10-18T20:57:22Z
last_indexed 2023-10-18T20:57:22Z
_version_ 1796151543629611008
spelling irk-123456789-1292842018-01-19T03:03:36Z Плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость Тарасов, Ю.В. Усатенко, О.В. Якушев, Д.А. К 75-летию открытия теплового сопротивления Капицы Изучается рассеяние поверхностных ТМ поляризованных плазмон-поляритонных волн (ППВ) конечным участком плоской границы металл–вакуум со случайно флуктуирующим импедансом. Анализируется решение интегрального уравнения, связывающего рассеянное поле с полем падающей ППВ, справедливое для произвольной интенсивности рассеяния и произвольных диссипативных свойств проводящей среды. В качестве меры рассеяния ППВ используется гильбертова норма рассеивающего интегрального оператора. Показано, что интенсивность рассеяния определяется не только параметрами флуктуирующего импеданса (дисперсия, корреляционный радиус, длина участка неоднородности), но также критически зависит от величины проводимости металла. При малой норме интегрального оператора ППВ рассеивается в основном в вакуум, теряя энергию на возбуждение над проводящей поверхностью квазиизотропных волн нортоновского типа. Интенсивность рассеянного поля выражается в терминах парной корреляционной функции импеданса, зависимость которой от волновых чисел налетающей и рассеянных волн демонстрирует возможность наблюдать при рассеянии ППВ на случайных флуктуациях импеданса явление, аналогичное вудовским аномалиям рассеяния волн на периодических решетках. При сильном рассеянии, когда норма рассеивающего оператора становится большой по сравнению с единицей, излучение в объем подавляется, и в пределе ППВ зеркально отражается от неоднородного участка поверхности. Поэтому в модели бездиссипативной проводящей среды поверхностный поляритон неустойчив по отношению к сколь угодно малым флуктуациям поляризуемости проводника. Зеркализация рассеяния при сильных флуктуациях импеданса интерпретируется в терминах локализации Андерсона. Вивчається розсіяння поверхневих ТМ поляризованих плазмон-поляритонних хвиль (ППХ) кінцевою ділянкою плоскої межі метал–вакуум з імпедансом, що випадково флуктуює. Аналізується рішення інтегрального рівняння, що пов'язує розсіяне поле з полем падаючої ППХ, яке є справедливим для довільної інтенсивності розсіяння і довільних дисипативних властивостей середовища, що проводить. В якості міри розсіяння ППХ використовується гільбертова норма інтегрального оператора розсіяння. Показано, що інтенсивність розсіяння визначається не тільки параметрами імпедансу, що флуктуює (дисперсія, кореляційний радіус, довжина ділянки неоднорідності), але також критично залежить від величини провідності металу. При малій нормі інтегрального оператора ППХ розсіюється в основному в вакуум, втрачаючи енергію на збудження над провідною поверхнею квазіізотропних хвиль нортоновського типу. Інтенсивність розсіяного поля виражається в термінах парної кореляційної функції імпедансу, залежність якої від хвильових чисел хвиль, що налітають і розсіюються, демонструє можливість спостерігати при розсіянні ППХ на випадкових флуктуаціях імпедансу явище, аналогічне вудовським аномаліям розсіяння хвиль на періодичних гратках. При сильному розсіянні, коли норма оператора, що розсіює, стає великою в порівнянні з одиницею, випромінювання в об'єм пригнічується, і в межі нескінченної норми ППХ дзеркально відбивається від неоднорідної ділянки поверхні. Тому в моделі бездисипативного провідного середовища поверхневий поляритон э нестійким по відношенню до скільки завгодно малих флуктуацій поляризуємості провідника. Дзеркалізація розсіяння при сильних флуктуаціях імпедансу інтерпретується в термінах локалізації Андерсона. Scattering of TM-polarized surface plasmon-polariton waves (PPW) by a finite segment of the metal–vacuum interface with randomly fluctuating surface impedance is examined. Solution of the integral equation relating the scattered field with the field of the incident PPW, valid for arbitrary scattering intensity and arbitrary dissipative characteristics of the conductive medium, is analyzed. As a measure of the PPW scattering, the Hilbert norm of the integral scattering operator is used. The strength of the scattering is shown to be determined not only by the parameters of the fluctuating impedance (dispersion, correlation radius and the length of the inhomogeneity region) but also by the conductivity of the metal. If the scattering operator norm is small, the PPW is mainly scattered into the vacuum, thus losing its energy through the excitation of quasi-isotropic bulk Norton waves above the conducting surface. The scattered field intensity is expressed in terms of the random impedance pair-correlation function. Its dependence on the incident and scattered wavenumbers shows that in the case of random-impedance-induced scattering of PPW it is possible to observe the effect analogous to Wood's anomalies on gratings. Under strong scattering, when the norm of the scattering operator becomes large compared to unity, the radiation into free space is strongly suppressed, and, in the limit, the incoming PPW is almost perfectly back-reflected from the inhomogeneous part of the interface. Therefore, within the model of a dissipation-free conducting medium, the surface polariton is unstable against arbitrary small fluctuations of the medium polarizability. Transition from scattering to back-reflection under strong fluctuations of the impedance is interpreted in terms of the Anderson localization. 2016 Article Плазмон–поляритоны на границе с флуктуирующим импедансом: рассеяние, локализация, устойчивость / Ю.В. Тарасов, О.В. Усатенко, Д.А. Якушев // Физика низких температур. — 2016. — Т. 42, № 8. — С. 870-886. — Бібліогр.: 36 назв. — рос. 0132-6414 PACS: 73.20.Mf, 81.05.Xj http://dspace.nbuv.gov.ua/handle/123456789/129284 ru Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України