Metamorphoses of electronic structure of FeSe-based superconductors (Review Article)

The electronic structure of FeSe, the simplest iron-based superconductor (Fe-SC), conceals a potential of dramatic increase of Tc that realizes under pressure or in a single layer film. This is also the system where nematicity, the phenomenon of a keen current interest, is most easy to study since...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Yu.V., Pustovit, Kordyuk, A.A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2016
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/129320
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Metamorphoses of electronic structure of FeSe-based superconductors (Review Article) / Yu.V. Pustovit A.A. Kordyuk // Физика низких температур. — 2016. — Т. 42, № 11. — С. 1268-1283. — Бібліогр.: 107 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The electronic structure of FeSe, the simplest iron-based superconductor (Fe-SC), conceals a potential of dramatic increase of Tc that realizes under pressure or in a single layer film. This is also the system where nematicity, the phenomenon of a keen current interest, is most easy to study since it is not accompanied by the antiferomagnetic transition like in all other Fe-SC’s. Here we overview recent experimental data on electronic structure of FeSe-based superconductors: isovalently doped crystals, intercalates, and single layer films, trying to clarify its topology and possible relation of this topology to superconductivity. We argue that the marked differences between the experimental and calculated band structures for all FeSe compounds can be described by a hoping selective renormalization model for a spin/orbital correlated state that may naturally explain both the evolution of the band structure with temperature and nematicity.