Повнота секвенційних числень модальних логік немонотонних часткових предикатів

Для чистих першопорядкових композиційно-номінативних модальних логік часткових немонотонних предикатів побудовано числення секвенційного типу. Описано різновиди цих числень, для них вказано базові секвенційні форми та умови замкненості секвенцій, доведено їх коректність і повноту. Доведення теореми...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Шкільняк, О.С., Касьянюк, В.С., Малютенко, Л.М.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2016
Назва видання:Штучний інтелект
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/132074
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Повнота секвенційних числень модальних логік немонотонних часткових предикатів / О.С. Шкільняк, В.С. Касьянюк, Л.М. Малютенко // Штучний інтелект. — 2016. — № 3. — С. 92-102. — Бібліогр.: 7 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Для чистих першопорядкових композиційно-номінативних модальних логік часткових немонотонних предикатів побудовано числення секвенційного типу. Описано різновиди цих числень, для них вказано базові секвенційні форми та умови замкненості секвенцій, доведено їх коректність і повноту. Доведення теореми повноти опирається на теорему про існування контрмоделі для незамкненого шляху в секвенційному дереві, для її побудови використано метод систем модельних множин.