2025-02-22T09:35:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-132091%22&qt=morelikethis&rows=5
2025-02-22T09:35:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-132091%22&qt=morelikethis&rows=5
2025-02-22T09:35:57-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T09:35:57-05:00 DEBUG: Deserialized SOLR response
Usage of artificial neural networks in the energy sector
The work covers non-traditional methods of forecasting, in particular, methods using artificial neural networks. The article considers such vital moments as: neural network configuration, normalization of input data, also random factors which have influence on the accuracy of load forecasts, are tak...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут проблем штучного інтелекту МОН України та НАН України
2016
|
Series: | Штучний інтелект |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/132091 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The work covers non-traditional methods of forecasting, in particular, methods using artificial neural networks. The article considers such vital moments as: neural network configuration, normalization of input data, also random factors which have influence on the accuracy of load forecasts, are taken into account. Comparative characteristics of effectiveness of artificial neural networks and artificial neural networks with fuzzy logic are given. |
---|