2025-02-22T17:57:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-132403%22&qt=morelikethis&rows=5
2025-02-22T17:57:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-132403%22&qt=morelikethis&rows=5
2025-02-22T17:57:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:57:16-05:00 DEBUG: Deserialized SOLR response

On analogs of some group-theoretic concepts and results for Leibniz algebras

An algebra L over a field F is said to be a Leibniz algebra (more precisely a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]] – [b, [a, c]] for all a, b, c ∈ L. Leibniz algebras are generalizations of Lie algebras. We consider some classes of generalized nilpo...

Full description

Saved in:
Bibliographic Details
Main Authors: Kurdachenko, L.A., Subbotin, I.Ya., Semko, N.N.
Format: Article
Language:English
Published: Видавничий дім "Академперіодика" НАН України 2018
Series:Доповіді НАН України
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/132403
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An algebra L over a field F is said to be a Leibniz algebra (more precisely a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]] – [b, [a, c]] for all a, b, c ∈ L. Leibniz algebras are generalizations of Lie algebras. We consider some classes of generalized nilpotent Leibniz algebras (hypercentral, locally nilpotent algebras, and algebras with the idealizer condition) and show their some basic properties.