General elliptic boundary-value problems in Hörmander—Roitberg spaces

We study semilinear partial differential equations in the plane, the linear part of which is written in a divergence form. The main result is given as a factorization theorem. This theorem states that every weak solution of such an equation can be represented as a composition of a weak solution of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Gutlyanskii, V.Ya., Nesmelova, O.V., Ryazanov, V.I.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім "Академперіодика" НАН України 2018
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/132635
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:General elliptic boundary-value problems in Hörmander—Roitberg spaces / V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov // Доповіді Національної академії наук України. — 2018. — № 2. — С. 12-18. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We study semilinear partial differential equations in the plane, the linear part of which is written in a divergence form. The main result is given as a factorization theorem. This theorem states that every weak solution of such an equation can be represented as a composition of a weak solution of the corresponding isotropic equation in a canonical domain and a quasiconformal mapping agreed with a matrix-valued measurable coefficient appearing in the divergence part of the equation. The latter makes it possible, in particular, to remove the regularity restrictions on the boundary in the study of boundary-value problems for such semilinear equations.